scholarly journals Evidence That Cingulin Regulates Endothelial Barrier Function In Vitro and In Vivo

2016 ◽  
Vol 36 (4) ◽  
pp. 647-654 ◽  
Author(s):  
Klaudia Schossleitner ◽  
Sabine Rauscher ◽  
Marion Gröger ◽  
Heinz Peter Friedl ◽  
Richard Finsterwalder ◽  
...  
2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Thomas Helbing ◽  
Elena Ketterer ◽  
Bianca Engert ◽  
Jennifer Heinke ◽  
Sebastian Grundmann ◽  
...  

Introduction: Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome, are associated with high morbidity and mortality in patients. During the progression of ALI, the endothelial cell barrier of the pulmonary vasculature becomes compromised, leading to pulmonary edema, a characteristic feature of ALI. It is well-established that EC barrier dysfunction is initiated by cytoskeletal remodeling, which leads to disruption of cell-cell contacts and formation of paracellular gaps, allowing penetration of protein-rich fluid and inflammatory cells. Bone morphogenetic proteins (BMPs) are important players in endothelial dysfunction and inflammation but their effects on endothelial permeability in ALI have not been investigated until now. Methods and Results: As a first approach to assess the role of BMPs in acute lung injury we analysed BMP4 and BMPER expression in an infectious (LPS) and a non-infectious (bleomycin) mouse models of acute lung injury. In both models BMP4 and BMPER protein expression levels were reduced demonstrated by western blots, suggesting that BMPs are involved in progression ALI. To assess the role of BMPs on vascular leakage, a key feature of ALI, BMP activity in mice was inhibited by i.p. administration of LDN193189, a small molecule that blocks BMP signalling. After 3 days Evans blue dye (EVB) was administered i.v. and dye extravasation into the lungs was quantified as a marker for vascular leakage. Interestingly, LDN193189 significantly increased endothelial permeability compared to control lungs, indicating that BMP signaling is involved in maintenance of endothelial barrier function. To quantify effects of BMP inhibition on endothelial barrier function in vitro, HUVECs were seeded onto transwell filters and were exposed to LDN193189. After 3 days FITC-dextrane was added and passage into the lower chamber was quantified as a marker for endothelial barrier function. Thrombin served as a positive control. As expected from our in vivo experiments inhibition of BMP signaling by LDN193189 enhanced FITC-dextrane passage. To study specific effects of BMPs on endothelial barrier function, two protagonist of the BMP family, BMP2 and BMP4, or BMP modulator BMPER were tested in the transwell assay in vitro. Interestingly BMP4 and BMPER, but not BMP2, reduced FITC-dextrane passage demonstrating that BMP4 and BMPER improved endothelial barrier function. Vice versa, specific knock down of BMP4 or BMPER increased leakage in transwell assays. Im immuncytochemistry silencing of BMPER or BMP4 induced hyperpermeability as a consequence of a pro-inflammatory endothelial phenotype characterised by reduced cell-cell contacts and increased actin stress fiber formation. Additionally, the pro-inflammatory endothelial phenotype was confirmed by real-time revealing increased expression of adhesion molecules ICAM-1 or proinflammatory cytokines such as IL-6 and IL-8 in endothelial cells after BMPER or BMP4 knock down. Confirming these in vitro results BMPER +/- mice exhibit increased extravasation of EVB into the lungs, indicating that partial loss of BMPER impairs endothelial barrier function in vitro and in vivo. Conclusion: We identify BMPER and BMP4 as local regulators of vascular permeability. Both are protective for endothelial barrier function and may open new therapeutic avenues in the treatment of acute lung injury.


Author(s):  
Bo-Wen Xu ◽  
Zhi-Qiang Cheng ◽  
Xu-Ting Zhi ◽  
Xiao-Mei Yang ◽  
Zhi-Bo Yan

Abstract Endothelial barrier integrity requires recycling of VE-cadherin to adherens junctions. Both p18 and Rab11a play significant roles in VE-cadherin recycling. However, the underlying mechanism and the role of p18 in activating Rab11a have yet to be elucidated. Performing in vitro and in vivo experiments, we showed that p18 protein bound to VE-cadherin before Rab11a through its VE-cadherin-binding domain (aa 1–39). Transendothelial resistance showed that overexpression of p18 promoted the circulation of VE-cadherin to adherens junctions and the recovery of the endothelial barrier. Silencing of p18 caused endothelial barrier dysfunction and prevented Rab11a-positive recycling endosome accumulation in the perinuclear recycling compartments. Furthermore, p18 knockdown in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide and cecal ligation puncture. This study showed that p18 regulated the pulmonary endothelial barrier function in vitro and in vivo by regulating the binding of Rab11a to VE-cadherin and the activation of Rab11a.


2009 ◽  
Vol 20 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Beata Wojciak-Stothard ◽  
Belen Torondel ◽  
Lan Zhao ◽  
Thomas Renné ◽  
James M. Leiper

Endogenously produced nitric oxide synthase inhibitor, asymmetric methylarginine (ADMA) is associated with vascular dysfunction and endothelial leakage. We studied the role of ADMA, and the enzymes metabolizing it, dimethylarginine dimethylaminohydrolases (DDAH) in the regulation of endothelial barrier function in pulmonary macrovascular and microvascular cells in vitro and in lungs of genetically modified heterozygous DDAHI knockout mice in vivo. We show that ADMA increases pulmonary endothelial permeability in vitro and in in vivo and that this effect is mediated by nitric oxide (NO) acting via protein kinase G (PKG) and independent of reactive oxygen species formation. ADMA-induced remodeling of actin cytoskeleton and intercellular adherens junctions results from a decrease in PKG-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and a subsequent down-regulation of Rac1 activity. The effects of ADMA on endothelial permeability, Rac1 activation and VASP phosphorylation are prevented by overexpression of active DDAHI and DDAHII, whereas inactive DDAH mutants have no effect. These findings demonstrate for the first time that ADMA metabolism critically determines pulmonary endothelial barrier function by modulating Rac1-mediated remodeling of the actin cytoskeleton and intercellular junctions.


2007 ◽  
Vol 98 (11) ◽  
pp. 944-951 ◽  
Author(s):  
Bettina Temmesfeld-Wollbrück ◽  
Andreas Hocke ◽  
Norbert Suttorp ◽  
Stefan Hippenstiel

SummaryAlthough loss of endothelial barrier function is a hallmark of every acute inflammation and contributes to fatal loss of organ function during severe infections, there is no sufficient therapy for stabilization of endothelial barrier function. Endogenous peptide adrenomedullin (AM) serum levels were shown to be increased during severe infection including sepsis and septic shock. In different in-vitro and in-vivo models AM acted as a potent therapeutic endothelial barrier function-stabilizing agent. Activation of specific receptors by AM results in elevation of second messenger cAMP. AM inhibits actin-myosin based endothelial cell contraction and junctional disassembly, thereby preventing paracellular permeability and oedema formation. The peptide furthermore possesses several protective cardiovascular qualities, including protection of the microcirculation during inflammation, and was proven as an efficient counter-regulatory molecule in various models of sepsis and septic shock. Overall, AM may be an attractive molecule to combat against cardiovascular malfunction during severe infection.


2018 ◽  
Vol 315 (1) ◽  
pp. L66-L77 ◽  
Author(s):  
Lihua Ying ◽  
Cristina M. Alvira ◽  
David N. Cornfield

Compromised pulmonary endothelial cell (PEC) barrier function characterizes acute respiratory distress syndrome (ARDS), a cause of substantial morbidity and mortality. Survival from ARDS is greater in children compared with adults. Whether developmental differences intrinsic to PEC barrier function contribute to this survival advantage remains unknown. To test the hypothesis that PEC barrier function is more well-preserved in neonatal lungs compared with adult lungs in response to inflammation, we induced lung injury in neonatal and adult mice with systemic lipopolysaccharide (LPS). We assessed PEC barrier function in vivo and in vitro, evaluated changes in the expression of focal adhesion kinase 1 (FAK1) and phosphorylation in response to LPS, and determined the effect of FAK silencing and overexpression on PEC barrier function. We found that LPS induced a greater increase in lung permeability and PEC barrier disruption in the adult mice, despite similar degrees of inflammation and apoptosis. Although baseline expression was similar, LPS increased FAK1 expression in neonatal PEC but increased FAK1 phosphorylation and decreased FAK1 expression in adult PEC. Pharmacologic inhibition of FAK1 accentuated LPS-induced barrier disruption most in adult PEC. Finally, in response to LPS, FAK silencing markedly impaired neonatal PEC barrier function, whereas FAK overexpression preserved adult PEC barrier function. Thus, developmental differences in FAK expression during inflammatory injury serve to preserve neonatal pulmonary endothelial barrier function compared with that of adults and suggest that intrinsic differences in the immature versus pulmonary endothelium, especially relative to FAK1 phosphorylation, may contribute to the improved outcomes of children with ARDS.


2021 ◽  
Vol 19 ◽  
pp. 205873922110623
Author(s):  
Hisatake Mori ◽  
Muhammad Aminul Huq ◽  
Md. Monirul Islam ◽  
Naoshi Takeyama

Introduction: Acute respiratory response syndrome (ARDS) leads to increased permeability of the endothelial-epithelial barrier, which in turn promotes edema formation and hypoxemic respiratory failure. Although activated neutrophils are thought to play a significant role in mediating ARDS, at present the contribution of neutrophil extracellular traps (NETs) to lung endothelial barrier function is unclear. Methods: To clarify their role, we co-cultured in vitro NETs induced by phorbol myristate acetate (PMA)–activated neutrophils with lung endothelial cell monolayers and examined the barrier function of lung endothelial cells by immunofluorescence microscopy and albumin permeability in a double-chamber culture method. Results: Co-culture with stimulated neutrophils increased the albumin permeability of the human pulmonary artery endothelial cell (HPAEC) monolayer and altered cytoskeleton F-actin and vascular endothelial-cadherin in cell-cell junctions. Hyperpermeability to albumin and histological alterations were prevented by inhibition of NET formation with peptidyl arginine deiminase inhibitor or a neutrophil elastase inhibitor and were also prevented by increased degradation of NET structure with DNase. Conclusion: This in vitro experiment shows that altered HPAEC barrier function and increased albumin permeability are caused by the direct effect of PMA-induced NETs and their components. NET formation may be involved in the increased vascular permeability of the lung, which is a common feature in ARDS of various etiologies. These insights may help generate novel approaches for medical interventions.


2019 ◽  
Vol 30 (5) ◽  
pp. 607-621 ◽  
Author(s):  
Manon C. A. Pronk ◽  
Jisca Majolée ◽  
Anke Loregger ◽  
Jan S. M. van Bezu ◽  
Noam Zelcer ◽  
...  

Rho GTPases control both the actin cytoskeleton and adherens junction stability and are recognized as essential regulators of endothelial barrier function. They act as molecular switches and are primarily regulated by the exchange of GDP and GTP. However, posttranslational modifications such as phosphorylation, prenylation, and ubiquitination can additionally alter their localization, stability, and activity. F-box proteins are involved in the recognition of substrate proteins predestined for ubiquitination and subsequent degradation. Given the importance of ubiquitination, we studied the effect of the loss of 62 members of the F-box protein family on endothelial barrier function in human umbilical vein endothelial cells. Endothelial barrier function was quantified by electrical cell impedance sensing and macromolecule passage assay. Our RNA interference–based screen identified FBXW7 as a key regulator of endothelial barrier function. Mechanistically, loss of FBXW7 induced the accumulation of the RhoB GTPase in endothelial cells, resulting in their increased contractility and permeability. FBXW7 knockdown induced activation of the cholesterol biosynthesis pathway and changed the prenylation of RhoB. This effect was reversed by farnesyl transferase inhibitors and by the addition of geranylgeranyl pyrophosphate. In summary, this study identifies FBXW7 as a novel regulator of endothelial barrier function in vitro. Loss of FBXW7 indirectly modulates RhoB activity via alteration of the cholesterol biosynthesis pathway and, consequently, of the prenylation status and activity of RhoB, resulting in increased contractility and disruption of the endothelial barrier.


2006 ◽  
Vol 915 (1) ◽  
pp. 123-128 ◽  
Author(s):  
G. KOCH ◽  
S. PRÄTZEL ◽  
M. RODE ◽  
B. M. KRÄLING

Sign in / Sign up

Export Citation Format

Share Document