activated neutrophils
Recently Published Documents


TOTAL DOCUMENTS

503
(FIVE YEARS 91)

H-INDEX

63
(FIVE YEARS 7)

2022 ◽  
pp. 030098582110710
Author(s):  
Malgorzata Ciurkiewicz ◽  
Federico Armando ◽  
Tom Schreiner ◽  
Nicole de Buhr ◽  
Veronika Pilchová ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in an ongoing pandemic with millions of deaths worldwide. Infection of humans can be asymptomatic or result in fever, fatigue, dry cough, dyspnea, and acute respiratory distress syndrome with multiorgan failure in severe cases. The pathogenesis of COVID-19 is not fully understood, and various models employing different species are currently applied. Ferrets can be infected with SARS-CoV-2 and efficiently transmit the virus to contact animals. In contrast to hamsters, ferrets usually show mild disease and viral replication restricted to the upper airways. Most reports have used the intranasal inoculation route, while the intratracheal infection model is not well characterized. Herein, we present clinical, virological, and pathological data from young ferrets intratracheally inoculated with SARS-CoV-2. Infected animals showed no significant clinical signs, and had transient infection with peak viral RNA loads at 4 days postinfection, mild to moderate rhinitis, and pulmonary endothelialitis/vasculitis. Viral antigen was exclusively found in the respiratory epithelium of the nasal cavity, indicating a particular tropism for cells in this location. Viral antigen was associated with epithelial damage and influx of inflammatory cells, including activated neutrophils releasing neutrophil extracellular traps. Scanning electron microscopy of the nasal respiratory mucosa revealed loss of cilia, shedding, and rupture of epithelial cells. The currently established ferret SARS-CoV-2 infection models are comparatively discussed with SARS-CoV-2 pathogenesis in mink, and the advantages and disadvantages of both species as research models for zoonotic betacoronaviruses are highlighted.


2021 ◽  
pp. 1-14
Author(s):  
Gunnar Pejler ◽  
Sultan Alanazi ◽  
Mirjana Grujic ◽  
Jeremy Adler ◽  
Anna-Karin Olsson ◽  
...  

Previous research has indicated an intimate functional communication between mast cells (MCs) and neutrophils during inflammatory conditions, but the nature of such communication is not fully understood. Activated neutrophils are known to release DNA-containing extracellular traps (neutrophil extracellular traps [NETs]) and, based on the known ability of tryptase to interact with negatively charged polymers, we here hypothesized that tryptase might interact with NET-contained DNA and thereby regulate NET formation. In support of this, we showed that tryptase markedly enhances NET formation in phorbol myristate acetate-activated human neutrophils. Moreover, tryptase was found to bind vividly to the NETs, to cause proteolysis of core histones and to cause a reduction in the levels of citrullinated histone-3. Secretome analysis revealed that tryptase caused increased release of numerous neutrophil granule compounds, including gelatinase, lactoferrin, and myeloperoxidase. We also show that DNA can induce the tetrameric, active organization of tryptase, suggesting that NET-contained DNA can maintain tryptase activity in the extracellular milieu. In line with such a scenario, DNA-stabilized tryptase was shown to efficiently degrade numerous pro-inflammatory compounds. Finally, we showed that tryptase is associated with NET formation in vivo in a melanoma setting and that NET formation in vivo is attenuated in mice lacking tryptase expression. Altogether, these findings reveal that NET formation can be regulated by MC tryptase, thus introducing a novel mechanism of communication between MCs and neutrophils.


Author(s):  
Julie A. Poposki ◽  
Aiko I. Klingler ◽  
Whitney W. Stevens ◽  
Lydia A. Suh ◽  
Bruce K. Tan ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2679-2679
Author(s):  
Madelon M.E. de Jong ◽  
Cathelijne Fokkema ◽  
Natalie Papazian ◽  
Sabrin Tahri ◽  
Zoltan Kellermayer ◽  
...  

Abstract Background: Multiple myeloma (MM) disease progression is influenced by signals from the bone marrow (BM) microenvironment. Recently, we showed that the MM BM is characterized by inflammatory mesenchymal stromal cells (iMSCs) that transcribe MM survival factors and are predicted to recruit proliferating myeloma cells via CCL2-CCR2 interactions (de Jong et al. Nat Immunol. 2021). iMSCs also transcribed high levels of chemokines that can bind to CXCR1 and 2. Myeloid cells are known to express CXCR1/2, and have been implicated in both pro- and anti-tumor responses in various malignancies. Therefore, we hypothesized that iMSCs attract and influence myeloid populations in the MM BM. Results: Using flow cytometry, we verified expression of CXCR1/2 on myeloid cell populations in the BM of 5 newly diagnosed MM (NDMM) patients. CD15 + neutrophils were the most dominant population expressing these receptors, as 22.4% (± 9.8%) of cells expressed CXCR2 alone, and 72.6% (± 8.0%) expressed both CXCR1 and CXCR2. CD14 + monocytes only expressed CXCR2 (86.9% ± 15.8%). Importantly, less than 1% of myeloma cells expressed these receptors (n = 17 NDMM). As these findings suggested neutrophils and monocytes as potential targets of iMSC-mediated chemotaxis, we set out to identify MM-associated alterations in this population by performing single cell RNA sequencing of the full neutrophilic and monocytic lineages (n = 5 NDMM and 2 controls). In line with our flow cytometric data, CXCR1 transcripts were absent in monocytes, while CXCR2 was transcribed by classical monocytes of both myeloma patients and controls. Interestingly, CXCR1 and CXCR2 transcription was increased in mature neutrophils of MM patients compared to controls. Additionally, both mature classical monocytes as well as mature neutrophils of MM patients had an activated transcriptome as defined by increased transcription of C3AR1, SLPI, and IL6R, the plasma cell supportive factor TNFSF13B (encoding BAFF), and the inflammatory cytokines IL1B and IL18. Transcription of IL1B and IL18 can be regulated by pattern-recognition receptors (PRRs) binding damage-associated molecular patterns (DAMPs) resulting from e.g. matrix breakdown. Transcription of PRRs as TLR1, 2 and 4 was increased in mature neutrophils and classical monocytes of MM patients compared to controls. Secretion of IL-1β and IL-18 relies on the cleavage of pro-forms of these cytokines by the inflammasome, a multiprotein complex that is assembled in response to alarmins. Transcription of inflammasome components PYCARD, NLRP3 and CASP1 was increased in mature neutrophils and classical monocytes of patients with MM. Additionally, protein levels of both IL-18 and IL-1β are increased in BM plasma from MM patients, implicating activated neutrophils and monocytes as a potential sources of these cytokines. Conclusion: In MM, mature neutrophils and classical monocytes are activated and might interact with iMSCs via CXCR1 and/or 2. Moreover, these myeloid cells are inflammasome-primed and are likely to be sources of the increased IL-1β levels in the MM BM. Therefore, myeloid cells and iMSCs may form a feed-forward loop in which myeloid cells contribute to a pro-MM environment by maintaining iMSC and by directly providing BAFF to tumor cells. Disclosures Broyl: Celgene/BMS: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria. Sonneveld: Janssen: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding; SkylineDx: Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Celgene/BMS: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding.


2021 ◽  
Vol 15 (5) ◽  
pp. 96-102
Author(s):  
K. S. Nurbaeva ◽  
T. M. Reshetnyak ◽  
A. M. Lila

Antiphospholipid syndrome (APS) and systemic lupus erythematosus (SLE) are autoimmune diseases. In recent years, APS has been considered as an autoimmune thrombo-inflammatory disease. It has been established that clinical manifestations of APS can persist, progress over time, or debut during an adequate anticoagulant therapy and, in some cases, require administration of immunosuppressive drugs, which indicates the role of autoimmune inflammation in their development. The formation of extracellular neutrophil traps (neutrophil extracellular traps, NETs) is one of the connecting links of inflammation and thrombosis. Netosis is the process by which activated neutrophils in the extracellular space form netlike structures (NETs). This review examines the role of neutrophils and netosis in the pathogenesis of APS and SLE.


2021 ◽  
Author(s):  
Elisabeth Robinson ◽  
Jenny Amanda Herbert ◽  
Machaela Palor ◽  
Luo Ren ◽  
Isobel Larken ◽  
...  

In the airways, recruitment and activation of neutrophils occurs early following respiratory virus (RSV) infection and is associated with the development of severe disease. We investigated whether activated neutrophils selectively migrate across virus infected airway epithelial cells, or whether trans-epithelial migration is sufficient and necessary for neutrophil activation. We profiled the movement and adherence of fluorescently labelled human neutrophils during migration across primary human airway epithelial cells (AECs) infected with RSV in vitro. In RSV infected AECs neutrophil adherence, with clustering occurs after 15-18 minutes. Using flow cytometry, we found that, when migration occurred, expression of CD11b, CD62L, CD64, NE and MPO were increased in all compartments of our system and RSV infection further increased CD11b and NE expression. We found evidence suggesting that migrated neutrophils can migrate in reverse to the basolateral membrane. Our study provides novel insights into how airway activated neutrophils mediate systemic disease in respiratory virus infection.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chenyu Mao ◽  
Xin Xu ◽  
Yongfeng Ding ◽  
Nong Xu

Bladder cancer (BC) is the ninth most common cancer and the thirteenth most common cause of mortality worldwide. Bacillus Calmette Guerin (BCG) instillation is a common treatment option for BC. BCG therapy is associated with the less adversary effects, compared to chemotherapy, radiotherapy, and other conventional treatments. BCG could inhibit the progression and recurrence of BC by triggering apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formation. However, BCG therapy is not efficient for metastatic cancer. NETs and autophagy were induced by BCG and help to suppress the growth of tumor cells especially in the primary stages of BC. Activated neutrophils can stimulate autophagy pathway and release NETs in the presence of microbial pathogenesis, inflammatory agents, and tumor cells. Autophagy can also regulate NETs formation and induce production of reactive oxygen species (ROS) and NETs. Moreover, miRNAs are important regulator of gene expression. These small non-coding RNAs are also considered as an essential factor to control the levels of tumor development. However, the interaction between BCG and miRNAs has not been well-understood yet. Therefore, the present study discusses the roles of miRNAs in regulations of autophagy and NETs formation in BCG therapy in the treatment of BC. The roles of autophagy and NETs formation in BC treatment and efficiency of BCG are also discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seunghwan Son ◽  
Sung-Hyun Yoon ◽  
Byeong Jun Chae ◽  
Inhwa Hwang ◽  
Do-Wan Shim ◽  
...  

Aberrant inflammasome activation contributes to various chronic inflammatory diseases; however, pyroptosis of inflammasome-active cells promptly terminates local inflammasome response. Molecular mechanisms underlying prolonged inflammasome signaling thus require further elucidation. Here, we report that neutrophil-specific resistance to pyroptosis and NLRP3 desensitization can facilitate sustained inflammasome response and interleukin-1β secretion. Unlike macrophages, inflammasome-activated neutrophils did not undergo pyroptosis, indicated by using in vitro cell-based assay and in vivo mouse model. Intriguingly, danger-associated molecular patterns (DAMP)-rich milieu in the inflammatory region significantly abrogated NLRP3-activating potential of macrophages, but not of neutrophils. This macrophage-specific NLRP3 desensitization was associated with DAMP-induced mitochondrial depolarization that was not observed in neutrophils due to a lack of SARM1 expression. Indeed, valinomycin-induced compulsory mitochondrial depolarization in neutrophils restored inflammasome-dependent cell death and ATP-induced NLRP3 desensitization in neutrophils. Alongside prolonged inflammasome-activating potential, neutrophils predominantly secreted interleukin-1β rather than other proinflammatory cytokines upon NLRP3 stimulation. Furthermore, inflammasome-activated neutrophils did not trigger efferocytosis-mediated M2 macrophage polarization essential for the initiation of inflammation resolution. Taken together, our results indicate that neutrophils can prolong inflammasome response via mitochondria-dependent resistance to NLRP3 desensitization and function as major interleukin-1β-secreting cells in DAMP-rich inflammatory region.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yumiko Sekiya ◽  
Kaoru Shimada ◽  
Hiroshi Takahashi ◽  
Chisa Kuga ◽  
Shunsuke Komachi ◽  
...  

Abstract Background Platelet–neutrophil complexes (PNCs) readily migrate into tissues and induce tissue damage via cytokine or other pathogenic factors release. These actions are involved in onset and progression of acute respiratory distress syndrome (ARDS). Thus, simultaneous removal of cytokines and activated neutrophils, including PNCs by blood purification may prevent development of ARDS and enhance drug effects. The goal of this study was to examine the effect of a newly developed adsorption column (NOA-001) that eliminates cytokines and activated neutrophils in a lung injury model. Results Adsorption of cytokines, such as IL-8, IL-6 and HMGB-1, and PNCs was first measured in vitro. Lung injury was induced by HCl and lipopolysaccharide intratracheal infusion in rabbits ventilated at a low tidal volume (7–8 mL/kg) and PEEP (2.5 cmH2O) for lung protection. Arterial blood gas, hematologic values, plasma IL-8, blood pressure and heart rate were measured, and lung damage was evaluated histopathologically in animals treated with 8-h direct hemoperfusion with or without use of NOA-001. The in vitro adsorption rates for IL-8, IL-6, HMGB-1, activated granulocytes and PNCs were 99.5 (99.4–99.5)%, 63.9 (63.4–63.9)%, 57.6 (57.4–62.1)%, 9.9 (-4.4–21.3)% and 60.9 (49.0–67.6)%, respectively. Absorption of PNCs onto fibers was confirmed microscopically. These adsorption effects were associated with several improvements in the rabbit model. In respiratory function, the PaO2/FIO2 ratios at 8 h were 314 ± 55 mmHg in the NOA-001 group and 134 ± 41 mmHg in the sham group. The oxygenation index and PaCO2 at 8 h were 9.6 ± 3.1 and 57.0 ± 9.6 mmHg in the sham group and 3.0 ± 0.8 and 40.4 ± 4.5 mmHg in the NOA-001 group, respectively (p < 0.05). Blood pH at 8 h reached 7.18 ± 0.06 in the sham group, but was maintained at 7.36 ± 0.03 (within the normal range) in the NOA-001 group (p < 0.05). In lung histopathology, fewer hyaline membrane and inflammatory cells were observed in the NOA-001 group. Conclusion A column for simultaneous removal of cytokines and PNCs showed efficacy for improvement of pulmonary function in an animal model. This column may be effective in support of treatment of ARDS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Olga Tatsiy ◽  
Vanessa de Carvalho Oliveira ◽  
Hugo Tshivuadi Mosha ◽  
Patrick P. McDonald

Neutrophil extracellular trap (NET) formation has emerged as an important response against various pathogens; it also plays a role in chronic inflammation, autoimmunity, and cancer. Despite a growing understanding of the mechanisms underlying NET formation, much remains to be elucidated. We previously showed that in human neutrophils activated with different classes of physiological stimuli, NET formation features both early and late events that are controlled by discrete signaling pathways. However, the nature of these events has remained elusive. We now report that PAD4 inhibition only affects the early phase of NET generation, as do distinct signaling intermediates (TAK1, MEK, p38 MAPK). Accordingly, the inducible citrullination of residue R2 on histone H3 is an early neutrophil response that is regulated by these kinases; other arginine residues on histones H3 and H4 do not seem to be citrullinated. Conversely, elastase blockade did not affect NET formation by several physiological stimuli, though it did so in PMA-activated cells. Among belated events in NET formation, we found that chromatin decondensation is impaired by the inhibition of signaling pathways controlling both early and late stages of the phenomenon. In addition to chromatin decondensation, other late processes were uncovered. For instance, unstimulated neutrophils can condition themselves to be poised for rapid NET induction. Similarly, activated neutrophils release endogenous proteic factors that promote and largely mediate NET generation. Several such factors are known RAGE ligands and accordingly, RAGE inbibition largely prevents both NET formation and the conditioning of neutrophils to rapidly generate NETs upon stimulation. Our data shed new light on the cellular processes underlying NET formation, and unveil unsuspected facets of the phenomenon that could serve as therapeutic targets. In view of the involvement of NETs in both homeostasis and several pathologies, our findings are of broad relevance.


Sign in / Sign up

Export Citation Format

Share Document