scholarly journals Activation of the Bone Morphogenetic Protein Receptor by H11Kinase/Hsp22 Promotes Cardiac Cell Growth and Survival

2009 ◽  
Vol 104 (7) ◽  
pp. 887-895 ◽  
Author(s):  
Xiangzhen Sui ◽  
Dan Li ◽  
Hongyu Qiu ◽  
Vinciane Gaussin ◽  
Christophe Depre
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Xiangzhen Sui ◽  
Dan Li ◽  
Nadia Hedhli ◽  
Hongyu Qiu ◽  
Vinciane Gaussin ◽  
...  

The bone morphogenetic protein (BMP) pathway is a major signaling mechanism during cardiac development but it has no clear function in the post-natal heart. Here, we tested the hypothesis that BMP mediates the physiological effect of the cardiac chaperone H11Kinase/Hsp22 (H11K). Expression of H11K increases during both cardiac ischemia and overload, and its cardiac-specific over-expression in a transgenic (TG) mouse is sufficient to provide major protection against ischemia and to promote cardiac cell growth, which involves the activation of phosphatidylinositol-3-kinase (PI3K) and of its effector Akt. We tested whether H11K-induced activation of PI3K is mediated by BMP. Microarray comparison between hearts from TG and wild type (WT) mice showed an up-regulation of the BMP receptor subunits Alk3 and BMPR-II, as well as of the BMP receptor ligand BMP4, which was confirmed at the protein level (P<0.01 vs WT). Activation of the BMP pathway in TG mice was confirmed by increased phosphorylation of the canonical BMP effectors Smad 1/5/8 (P<0.01 vs WT). The mechanism was further studied in isolated cardiac myocytes. Adeno-mediated over-expression of H11K was accompanied by significant 2–3-fold increase in PI3K activity, phospho-Akt, Smad 1/5/8 phosphorylation and cell growth as measured by [3H]phenylalanine incorporation, and by a 70% reduction in H2O2-mediated apoptosis (all values, P<0.01 vs control). All these changes mediated by H11K in myocytes were abolished upon addition of the BMP antagonist noggin. In pull-down experiments, H11K co-precipitated with both Alk3 and BMPR-II, and increased the association of these two subunits into a functional receptor. Accordingly, Smad 1/5/8 phosphorylation in presence of BMP4 was enhanced by 5-fold upon H11K over-expression, whereas it was decreased by 3-fold upon H11K knockdown (both, P<0.01 vs control), which shows that H11K potentiates the BMP receptor signaling pathway. Therefore, potentiation of the BMP receptor pathway by H11K promotes the activation of the PI3K/Akt pathway and dictates the physiological effects of H11K on cardiac cell growth and survival, which shows a novel role for BMP signaling in post-natal heart. This research has received full or partial funding support from the American Heart Association, AHA National Center.


2010 ◽  
Vol 285 (48) ◽  
pp. 37641-37649 ◽  
Author(s):  
Hannah J. Durrington ◽  
Paul D. Upton ◽  
Simon Hoer ◽  
Jessica Boname ◽  
Benjamin J. Dunmore ◽  
...  

2020 ◽  
Vol 13 (9) ◽  
pp. dmm045971 ◽  
Author(s):  
Jelmer Hoeksma ◽  
Gerard C. M. van der Zon ◽  
Peter ten Dijke ◽  
Jeroen den Hertog

ABSTRACTZebrafish models are well-established tools for investigating the underlying mechanisms of diseases. Here, we identified cercosporamide, a metabolite from the fungus Ascochyta aquiliqiae, as a potent bone morphogenetic protein receptor (BMPR) type I kinase inhibitor through a zebrafish embryo phenotypic screen. The developmental defects in zebrafish, including lack of the ventral fin, induced by cercosporamide were strikingly similar to the phenotypes caused by renowned small-molecule BMPR type I kinase inhibitors and inactivating mutations in zebrafish BMPRs. In mammalian cell-based assays, cercosporamide blocked BMP/SMAD-dependent transcriptional reporter activity and BMP-induced SMAD1/5-phosphorylation. Biochemical assays with a panel of purified recombinant kinases demonstrated that cercosporamide directly inhibited kinase activity of type I BMPRs [also called activin receptor-like kinases (ALKs)]. In mammalian cells, cercosporamide selectively inhibited constitutively active BMPR type I-induced SMAD1/5 phosphorylation. Importantly, cercosporamide rescued the developmental defects caused by constitutively active Alk2 in zebrafish embryos. We believe that cercosporamide could be the first of a new class of molecules with potential to be developed further for clinical use against diseases that are causally linked to overactivation of BMPR signaling, including fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma.This article has an associated First Person interview with the first author of the paper.


2018 ◽  
Vol 114 (suppl_1) ◽  
pp. S97-S97
Author(s):  
S Sharma ◽  
A Alimohammadi ◽  
S Chausheva ◽  
J Altmann ◽  
A Panzenboeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document