regulatory cell
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 67)

H-INDEX

55
(FIVE YEARS 6)

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Yasmien Abdel-moneam ◽  
Mona Abdel-Rahim ◽  
Helal Hetta ◽  
Omar Herdan ◽  
Khaled Hassanein

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260280
Author(s):  
Revathi Shanmugasundaram ◽  
Keila Acevedo ◽  
Mohamad Mortada ◽  
Gabriel Akerele ◽  
Todd J. Applegate ◽  
...  

Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 μg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.


BMJ Open ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. e056841
Author(s):  
Laura L Koth ◽  
Laura D Harmacek ◽  
Elizabeth K White ◽  
Nicholas Kostandinos Arger ◽  
Linda Powers ◽  
...  

IntroductionSarcoidosis is a multiorgan granulomatous disorder thought to be triggered and influenced by gene–environment interactions. Sarcoidosis affects 45–300/100 000 individuals in the USA and has an increasing mortality rate. The greatest gap in knowledge about sarcoidosis pathobiology is a lack of understanding about the underlying immunological mechanisms driving progressive pulmonary disease. The objective of this study is to define the lung-specific and blood-specific longitudinal changes in the adaptive immune response and their relationship to progressive and non-progressive pulmonary outcomes in patients with recently diagnosed sarcoidosis.Methods and analysisThe BRonchoscopy at Initial sarcoidosis diagnosis Targeting longitudinal Endpoints study is a US-based, NIH-sponsored longitudinal blood and bronchoscopy study. Enrolment will occur over four centres with a target sample size of 80 eligible participants within 18 months of tissue diagnosis. Participants will undergo six study visits over 18 months. In addition to serial measurement of lung function, symptom surveys and chest X-rays, participants will undergo collection of blood and two bronchoscopies with bronchoalveolar lavage separated by 6 months. Freshly processed samples will be stained and flow-sorted for isolation of CD4 +T helper (Th1, Th17.0 and Th17.1) and T regulatory cell immune populations, followed by next-generation RNA sequencing. We will construct bioinformatic tools using this gene expression to define sarcoidosis endotypes that associate with progressive and non-progressive pulmonary disease outcomes and validate the tools using an independent cohort.Ethics and disseminationThe study protocol has been approved by the Institutional Review Boards at National Jewish Hospital (IRB# HS-3118), University of Iowa (IRB# 201801750), Johns Hopkins University (IRB# 00149513) and University of California, San Francisco (IRB# 17-23432). All participants will be required to provide written informed consent. Findings will be disseminated via journal publications, scientific conferences, patient advocacy group online content and social media platforms.


2021 ◽  
Vol 14 (11) ◽  
pp. 101195
Author(s):  
Kuan-Hui Ethan Chen ◽  
Mrinal Ghosh ◽  
Lorena Rivera ◽  
Samuel Lin ◽  
Anil Kumar ◽  
...  

2021 ◽  
pp. 27-43
Author(s):  
Yalcin Kulahci ◽  
Hulya Kapucu ◽  
James D. Fisher ◽  
Steven R. Little

2021 ◽  
Vol 12 ◽  
Author(s):  
Nicole Kashani ◽  
Eve E. Kelland ◽  
Borna Vajdi ◽  
Lauren M. Anderson ◽  
Wendy Gilmore ◽  
...  

Alemtuzumab is a highly effective treatment for relapsing-remitting multiple sclerosis. It selectively targets the CD52 antigen to induce profound lymphocyte depletion, followed by recovery of T and B cells with regulatory phenotypes. We previously showed that regulatory T cell function is restored with cellular repletion, but little is known about the functional capacity of regulatory B-cells and peripheral blood monocytes during the repletion phase. In this study (ClinicalTrials.gov ID# NCT03647722) we simultaneously analyzed the change in composition and function of both regulatory lymphocyte populations and distinct monocyte subsets in cross-sectional cohorts of MS patients prior to or 6, 12, 18, 24 or 36 months after their first course of alemtuzumab treatment. We found that the absolute number and percentage of cells with a regulatory B cell phenotype were significantly higher after treatment and were positivity correlated with regulatory T cells. In addition, B cells from treated patients secreted higher levels of IL-10 and BDNF, and inhibited the proliferation of autologous CD4+CD25- T cell targets. Though there was little change in monocytes populations overall, following the second annual course of treatment, CD14+ monocytes had a significantly increased anti-inflammatory bias in cytokine secretion patterns. These results confirmed that the immune system in alemtuzumab-treated patients is altered in favor of a regulatory milieu that involves expansion and increased functionality of multiple regulatory populations including B cells, T cells and monocytes. Here, we showed for the first time that functionally competent regulatory B cells re-appear with similar kinetics to that of regulatory T-cells, whereas the change in anti-inflammatory bias of monocytes does not occur until after the second treatment course. These findings justify future studies of all regulatory cell types following alemtuzumab treatment to reveal further insights into mechanisms of drug action, and to identify key immunological predictors of durable clinical efficacy in alemtuzumab-treated patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shi Dong ◽  
Xin Li ◽  
Wenkai Jiang ◽  
Zhou Chen ◽  
Wence Zhou

AbstractPancreatic cancer is a highly malignant tumour of the digestive tract. Despite advances in treatment, its 5-year survival rate remains low, and its prognosis is the worst among all cancers; innovative therapeutic methods are needed. Ferroptosis is a form of regulatory cell death driven by iron accumulation and lipid peroxidation. Recent studies have found that ferroptosis plays an important role in the development and treatment response of tumours, particularly pancreatic cancer. This article reviews the current understanding of the mechanism of ferroptosis and ferroptosis-related treatment in pancreatic cancer.


2021 ◽  
Vol 22 (15) ◽  
pp. 7970
Author(s):  
Maaike Suuring ◽  
Aurélie Moreau

Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn’s disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.


Sign in / Sign up

Export Citation Format

Share Document