Identification of Drug Transporter Genomic Variants and Inhibitors that Protect Against Doxorubicin-Induced Cardiotoxicity

Author(s):  
Tarek Magdy ◽  
Mariam Jouni ◽  
Hui-Hsuan Kuo ◽  
Carly J. Weddle ◽  
Davi Lyra-Leite ◽  
...  

Background: Multiple pharmacogenomic studies have identified the synonymous genomic variant rs7853758 (G>A, L461L) and the intronic variant rs885004 in SLC28A3 as statistically associated with a lower incidence of anthracycline-induced cardiotoxicity (AIC). However, the true causal variant(s), the cardioprotective mechanism of this locus, the role of SLC28A3 and other solute carrier (SLC) transporters in AIC, and the suitability of SLC transporters as targets for cardioprotective drugs has not been investigated. Methods: Six well-phenotyped, doxorubicin-treated pediatric patients from the original association study cohort were re-recruited and human induced pluripotent stem cell-derived cardiomyocytes were generated. Patient-specific doxorubicin-induced cardiotoxicity (DIC) was then characterized using assays of cell viability, activated caspase 3/7, and doxorubicin uptake. The role of SLC28A3 in DIC was then queried using overexpression and knockout of SLC28A3 in isogenic hiPSCs using a CRISPR/Cas9. Fine−mapping of the SLC28A3 locus was then completed after SLC28A3 resequencing and an extended in silico haplotype and functional analysis. Genome editing of potential causal variant was done using cytosine base editor. SLC28A3−AS1 overexpression was done using a lentiviral plasmid-based transduction and was validated using stranded RNA-Seq after ribosomal RNA depletion. Drug screening was done using the Prestwick drug library ( n = 1200) followed by in vivo validation in mice. The effect of desipramine on DOX cytotoxicity was also investigated in eight cancer cell lines. Results: Here, using the most commonly used anthracycline, doxorubicin, we demonstrate that patient-derived cardiomyocytes recapitulate the cardioprotective effect of the SLC28A3 locus and that SLC28A3 expression influences the severity of DIC. Using Nanopore¬-based fine-mapping and base editing we identify a novel cardioprotective SNP rs11140490 in the SLC28A3 locus which exerts its effect by regulating an antisense long noncoding-RNA ( SLC28A3-AS1 ) that overlaps with SLC28A3 . Using high-throughput drug screening in patient-derived cardiomyocytes and whole organism validation in mice, we identify the SLC competitive inhibitor desipramine as protective against DIC. Conclusions: This work demonstrates the power of the human induced pluripotent stem cell model to take a SNP from a statistical association through to drug discovery, providing human cell-tested data for clinical trials to attenuate DIC.

2017 ◽  
Vol 113 (5) ◽  
pp. 531-541 ◽  
Author(s):  
Marcella Rocchetti ◽  
Luca Sala ◽  
Lisa Dreizehnter ◽  
Lia Crotti ◽  
Daniel Sinnecker ◽  
...  

2010 ◽  
Vol 363 (15) ◽  
pp. 1397-1409 ◽  
Author(s):  
Alessandra Moretti ◽  
Milena Bellin ◽  
Andrea Welling ◽  
Christian Billy Jung ◽  
Jason T. Lam ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Henry Joutsijoki ◽  
Markus Haponen ◽  
Jyrki Rasku ◽  
Katriina Aalto-Setälä ◽  
Martti Juhola

The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient’s cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using ak-NN classifier showing improved accuracy compared to earlier studies.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Francesca Stillitano ◽  
Ioannis Karakikes ◽  
Chi-wai Kong ◽  
Brett Martinelli ◽  
Ronald Li ◽  
...  

Long QT syndrome (LQTS) is characterized by prolonged cardiac repolarization time and increased risk of ventricular arrhythmia. LQTS can be either inherited or induced notably after drugs intake. Mutations in genes encoding cardiac ion channels have been reported to underlie inherited LQTS. In contrast, drug-induced LQTS (diLQTS) most frequently arises from altered function of the hERG channel; the risk of developing diLQTS varies largely between subjects and most people who have life-threatening diLQTS have no known genetic risk factors. We investigated whether the susceptibility to develop diLQTS observed in vivo can be recapitulated in vitro using patient-specific induced pluripotent stem cell (iPSC) technology. We collected skin fibroblasts from ten subjects who developed significant diLQTS after administration of Sotalol and/or Erythromycin. Ten other individuals who displayed no changes in QT interval after administration of the same drugs, were selected. iPSC were generated by retroviral delivery of Oct4, Sox2, Nanog and Klf4 in 17 of the 20 individuals. We report preliminary results obtained from iPSC-derived cardiomyocytes (iPSC-CMs) of two subjects. All experiments were performed in a blinded fashion without knowledge of the associated clinical phenotype. Cardiac differentiation of iPSC resulted in the generation of spontaneously beating embryoid bodies. iPSC-CMs showed positive staining for TNNT2, ACTN2 and Cx43. Gene expression analysis confirmed the expression of NKX2.5, MLC2v, MYH6 and MYH7, and of the relevant KCNH2 gene. The two lines had similar basal electrophysiological properties as assessed by measurements of action potential (AP) by patch-clamp technique and extracellular field potentials (FP) using micro-electrode array (MEA). E4031, a classical HERG blocker, significantly prolonged the FP duration (FPD) in a dose-dependent manner in both lines (EC50: 30.19 and 51.57 respectively). When both Sotalol and Erythromicin were used, FPD was prolonged in one of the two samples in a dose-dependent manner (EC50Sotalol: 100; EC50Erythr: 9.64) while drug response was blunted in the other cell line. This study suggests that patient-specific iPSC can be used to model the functional abnormalities observed in acquired diLQTS.


2018 ◽  
Vol 360 ◽  
pp. 88-98 ◽  
Author(s):  
Liang Guo ◽  
Sandy Eldridge ◽  
Michael Furniss ◽  
Jodie Mussio ◽  
Myrtle Davis

Sign in / Sign up

Export Citation Format

Share Document