Abstract 272: Sex Differences in β-Adrenergic Responsiveness of Excitation-Contraction Coupling in Isolated Rabbit Hearts

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Gregory Hoeker ◽  
Ashleigh Hood ◽  
Rodolphe Katra ◽  
Steven Poelzing ◽  
Steven Pogwizd

Introduction: Sex differences in β-adrenergic receptor (β-AR) responsiveness are associated with female cardioprotection. We hypothesize that female (F) rabbits have reduced responsiveness to β-AR stimulation vs males (M), and that the degree and type of sex differences vary with the β-AR subtypes that are activated. Methods: Ventricular action potentials (AP) and intracellular calcium transients (CaT) were optically mapped from the epicardial surface of rabbit hearts during 3 Hz pacing. Spontaneous calcium release (SCR) and ectopic activity were elicited at 1, 3, and 5.5 Hz. β-responsiveness was assessed with the nonselective β-agonist isoproterenol (Iso, 1-316 nM), or β2-AR selective agonist zinterol (Zin, 10 nM). Results: At baseline, the time constant of CaT decay (τ) was faster in F than M (54.0±1.7 vs 62.1±3.0 ms; n=14, 14; p < 0.05), with no sex difference in CaT duration (CaD80). AP duration (APD90) was shorter in F than M (202.5±5.0 vs 218.2±5.7 ms; p < 0.05). Iso decreased τ, CaD80, and APD90 in a dose-dependent manner in both sexes (n = 5, 5 for F, M). Iso decreased τ to a lesser extent in F than M for 1 and 32-316 nM Iso (F = 11-32 ms, M = 23-48 ms; p < 0.05). The Iso-induced decrease in CaD80 was not significantly different in F than M at any dose. The Iso-induced decrease in APD90 was significantly less in F than M only at 316 nM Iso (75.5±8.7 ms vs 103.9±6.2 ms, p < 0.05). In contrast, there were no sex differences in the response to Zin for τ, CaD80, or APD90 (n = 6, 6 for F, M). Zin decreased τ by 7.2±2.0 ms in F vs 12.7±3.7 ms in M; CaD80 by 18.0±5.3% in F vs 21.1±8.0 ms in M; and APD90 by 24.9±8.5 ms in F vs 21.9±8.9 ms in M. SCR was observed in 50% (6/12) of hearts treated with Zin, whereas Iso elicited SCR in all hearts (10/10) with a dose threshold of 32 nM. No ectopic beats were observed with Zin (0/36 trials in 12 hearts). With Iso, ectopic activity was less frequent in F hearts (16%, 12/75 trials in 5 hearts) than in M hearts (41%, 26/68 trials in 5 hearts, p < 0.05). Conclusions: These results suggest that sex differences in AP and CaT depend on the dose of the agonist used and the β-AR subtypes that are activated. Elucidating nuances of sex differences in β-AR subtype physiology will provide a better understanding of the mechanisms of reduced β-responsiveness in F and its cardioprotective effects.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pradip K. Sarkar ◽  
Avijit Biswas ◽  
Arun K. Ray ◽  
Joseph V. Martin

The role of thyroid hormones (TH) in the normal functioning of adult mammalian brain is unclear. Our studies have identified synaptosomal Na+-K+-ATPase as a TH-responsive physiological parameter in adult rat cerebral cortex. L-triiodothyronine (T3) and L-thyroxine (T4) both inhibited Na+-K+-ATPase activity (but not Mg2+-ATPase activity) in similar dose-dependent fashions, while other metabolites of TH were less effective. Although both T3and theβ-adrenergic agonist isoproterenol inhibited Na+-K+-ATPase activity in cerebrocortical synaptosomes in similar ways, theβ-adrenergic receptor blocker propranolol did not counteract the effect of T3. Instead, propranolol further inhibited Na+-K+-ATPase activity in a dose-dependent manner, suggesting that the effect of T3on synaptosomal Na+-K+-ATPase activity was independent ofβ-adrenergic receptor activation. The effect of T3on synaptosomal Na+-K+-ATPase activity was inhibited by theα2-adrenergic agonist clonidine and by glutamate. Notably, both clonidine and glutamate activateGi-proteins of the membrane second messenger system, suggesting a potential mechanism for the inhibition of the effects of TH. In this paper, we provide support for a nongenomic mechanism of action of TH in a neuronal membrane-related energy-linked process for signal transduction in the adult condition.


2002 ◽  
Vol 88 (07) ◽  
pp. 123-130 ◽  
Author(s):  
Matthieu Broussas ◽  
Pascale Cornillet-Lefèbvre ◽  
Gérard Potron ◽  
Philippe Nguyên

SummaryTissue Factor (TF), an integral membrane glycoprotein that initiates the extrinsic pathway of blood coagulation, is thought to play a major part in coronary acute events. Adenosine, an endogenous nucleoside produced by the degradation of intracellular adenosine triphosphate, has been shown to exert many cardioprotective effects via an inhibition of platelets and neutrophils. This study was conducted to determine whether adenosine (ADO) could modulate the expression of TF by human monocytes. We found that ADO inhibited TF antigen and activity on endotoxin-stimulated monocytes in a dose-dependent manner. The mechanism was at least pre-translational since ADO caused a change in the TF mRNA level. Using ADO receptor-specific analogs, we showed that highly selective A3 agonist N6-(3-iodobenzyl)-adenosine-5’-N’-methyluronamide (IB-MECA) inhibited LPSinduced TF activity expression more potently than A1 agonist R-phenylisopropyladenosine (R-PIA) and A2 agonist CGS 2180. Furthermore, A1/A3 antagonist, xanthine amine congener (XAC) blocked the effect of ADO whereas A2a, A2b and A1 antagonists were ineffective. In addition, we observed that ADO agonists inhibited monocyte TF expression in LPS-stimulated whole blood. The rank order of agonist potency suggested that A2 and A3 receptors might be involved (2-Cado > CGS = IB-MECA > R-PIA). This was supported by the fact that A2 and A3 antagonists reversed the action of 2-Cado. We conclude that TF inhibition by ADO on human purified monocytes involved A3 receptors.


2014 ◽  
Vol 307 (8) ◽  
pp. F921-F930 ◽  
Author(s):  
Meredith J. McGee ◽  
Zachary C. Danziger ◽  
Jeremy A. Bamford ◽  
Warren M. Grill

Electrical stimulation of pudendal afferents can inhibit bladder contractions and increase bladder capacity. Recent results suggest that stimulation-evoked bladder inhibition is mediated by a mechanism other than activation of sympathetic bladder efferents in the hypogastric nerve, generating α-adrenergic receptor-mediated inhibition at the vesical ganglia and/or β-adrenergic receptor-mediated direct inhibition of the detrusor muscle. We investigated several inhibitory neurotransmitters that may instead be necessary for stimulation-evoked inhibition and found that intravenous picrotoxin, a noncompetitive GABAA antagonist, significantly and reversibly blocked pudendal afferent stimulation-evoked inhibition of bladder contractions in a dose-dependent manner. Similarly, intravenous picrotoxin also blocked pudendal afferent stimulation-evoked inhibition of nociceptive bladder contractions evoked by acetic acid infusion. Furthermore, intrathecal administration of picrotoxin at the lumbosacral spinal cord also blocked bladder inhibition by pudendal afferent stimulation. On the other hand, glycinergic, adrenergic, or opioidergic mechanisms were not necessary for bladder inhibition evoked by pudendal afferent stimulation. These results identify a lumbosacral spinal GABAergic mechanism of bladder inhibition evoked by pudendal afferent stimulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Wenjie Cheng ◽  
Xiaohua Sun ◽  
Yanfang Liu ◽  
Shiqi Han ◽  
Wanlu Ren

The report of bradycardia caused by propofol is increasing. In the experiment, we investigated the chronotropic function of propofol and the underlying mechanism. Rabbits of both sexes were randomly divided into 4 groups: propofol 5 mg/kg group, 10 mg/kg group, 15 mg/kg group, and sham group. Heart rate and frequency of vagal efferent discharge were recorded before the injection and 0, 0.5, 1, 2, and 10 min after the injection through intravenous mode. Then, their hearts were removed, and sinoatrial nodes were dissected. The action potentials of the sinus node pacemaker cells were recorded by the intracellular glass microelectrode technique, and the sinoatrial (SA) node was exposed to propofol 1, 3, 5, and 10 µM respectively. The action potentials were recorded after the sinoatrial nodes were exposed to each concentration of propofol for 15 min. Our results show that the heart rate significantly decreased, and the vagal efferent discharge was significantly increased at 0, 0.5, 1, and 2 min after the injection, respectively. Besides, as the dose increases, the magnitude of change shows a dose-dependent manner. Propofol exerts a negative chronotropic action on sinoatrial node pacemaker cells. The drug significantly decreased APA, VDD, RPF, and prolonged APD90 in a concentration-dependent manner. These effects may be the main mechanism of propofol-induced bradycardia in clinical study.


1987 ◽  
Vol 252 (1) ◽  
pp. E44-E48
Author(s):  
N. S. Krieger ◽  
P. H. Stern

The effects of forskolin, which directly activates adenylate cyclase in most systems, have been compared with the actions of parathyroid hormone and calcitonin, both of which have been suggested to utilize cAMP as a second messenger in their actions on bone. Forskolin alone stimulated calcium release from neonatal mouse calvaria and fetal rat limb bones in vitro in a dose-dependent manner. The effect was maximal at 10(-6) M in both systems. At higher concentrations forskolin completely inhibited stimulated bone resorption, although with submaximal concentrations the inhibition was only partially sustained up to 72 h. Forskolin directly stimulated cAMP release from calvaria into the medium at concentrations up to 10(-4) M. Forskolin had no effect on the interaction between parathyroid hormone and calcitonin, while calcitonin inhibited the stimulatory effect of forskolin comparably with its inhibition of parathyroid hormone-stimulated bone resorption. The results indicate that forskolin has dual effects on bone and can mimic responses of both parathyroid hormone and calcitonin in both bone culture systems. The observed response depends on the concentration of forskolin used and the length of treatment with the drug.


2012 ◽  
Vol 50 (3) ◽  
pp. 112-121 ◽  
Author(s):  
Jiin-Tarng Liou ◽  
Chih-Chieh Mao ◽  
Fu-Chao Liu ◽  
Huan-Tang Lin ◽  
Li-Man Hung ◽  
...  

2000 ◽  
Vol 348 (1) ◽  
pp. 173-181 ◽  
Author(s):  
Arun BANDYOPADHYAY ◽  
Dong-Wook SHIN ◽  
Do Han KIM

Experiments were conducted to examine the role of calcineurin in regulating Ca2+ fluxes in mammalian cells. In COS-7 cells, increasing concentrations (1-10 μM) of ATP triggered intracellular Ca2+ release in a dose-dependent manner. Treatment of the cells with calcineurin inhibitors such as cyclosporin A (CsA), deltamethrin and FK506 resulted in an enhancement of ATP-induced intracellular Ca2+ release. Measurement of calcineurin-specific phosphatase activity in vitro demonstrated a high level of endogenous calcineurin activities in COS-7 cells, which was effectively inhibited by the addition of deltamethrin or CsA. The expression of constitutively active calcineurin (CnA∆CaMAI) inhibited the ATP-induced increase in intracellular Ca2+ concentration ([Ca2+]i), in both the presence and the absence of extracellular Ca2+. These results suggest that the constitutively active calcineurin prevented Ca2+ release from the intracellular stores. In the calcineurin-transfected cells, treatment with CsA restored the calcineurin-mediated inhibition of intracellular Ca2+ release. Protein kinase C-mediated phosphorylation of Ins(1,4,5)P3 receptor [Ins(1,4,5)P3R] was partly inhibited by the extracts prepared from the vector-transfected cells and completely inhibited by those from cells co-transfected with CnA∆CaMAI and calcineurin B. On the addition of 10 μM CsA, the inhibited phosphorylation of Ins(1,4,5)P3R was restored in both the vector-transfected cells and the calcineurin-transfected cells. These results show direct evidence that Ca2+ release through Ins(1,4,5)P3R in COS-7 cells is regulated by calcineurin-mediated dephosphorylation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yun Ling ◽  
Jiajun Shi ◽  
Quanxin Ma ◽  
Qinqin Yang ◽  
Yili Rong ◽  
...  

Vasodilatory therapy plays an important role in the treatment of cardiovascular diseases, especially hypertension and coronary heart disease. Previous research found that Guanxinning tablet (GXNT), a traditional Chinese compound preparation composed of Salvia miltiorrhiza (Danshen) and Ligusticum chuanxiong (Chuanxiong), increase blood flow in the arteries, but whether vasodilation plays a role in this effect remains unclear. Here, we found that GXNT significantly alleviated the vasoconstriction of isolated rabbit thoracic aorta induced by phenylephrine (PE), norepinephrine (NE), and KCl in a dose-dependent manner with or without endothelial cells (ECs). Changes in calcium ion levels in vascular smooth muscle cells (VSMCs) showed that both intracellular calcium release and extracellular calcium influx through receptor-dependent calcium channel (ROC) declined with GXNT treatment. Experiments to examine potassium channels suggested that endothelium-denuded vessels were also regulated by calcium-activated potassium channels (Kca) and ATP-related potassium channels (KATP) but not voltage-gated potassium channels (kv) and inward rectifying potassium channels (KIR). For endothelium-intact vessels, the nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) contents in vascular tissue obviously increased after GXNT treatment, and pretreatment with the NO synthase inhibitor Nw-nitro-L-arginine methyl ester (L-NAME) or guanylyl cyclase inhibitor methylthionine chloride (MB) significantly inhibited vasodilation. An assessment of NO-related pathway protein expression revealed that GXNT enhanced the expression of phosphorylated endothelial NO synthase (eNOS) in a dose-dependent manner but had no effect on total eNOS, p-Akt, Akt, or PI3K levels in human umbilical vein ECs (HUVECs). In addition to PI3K/AKT signaling, Ca2+/calmodulin (CaM)-Ca2+/CaM-dependent protein kinase II (CaMKII) signaling is a major signal transduction pathway involved in eNOS activation in ECs. Further results showed that free calcium ion levels were decreased in HUVECs with GXNT treatment, accompanied by an increase in p-CaMKII expression, implying an increase in the Ca2+/CaM-Ca2+/CaMKII cascade. Taken together, these findings suggest that the GXNT may have exerted their vasodilative effect by activating the endothelial CaMKII/eNOS signaling pathway in endothelium-intact rings and calcium-related ion channels in endothelium-denuded vessels.


1988 ◽  
Vol 90 (3) ◽  
pp. 465-473 ◽  
Author(s):  
MICHAEL A. LYDAN ◽  
DANTON H. O'DAY

The agents LaCl3, Ins(1,4,5)P3, TMB-8, chlortetracycline (CTC) and A23187 were used to study the requirement for internal calcium mobilization during gamete cell fusion in Dictyostelium discoideum. The inhibition of the influx of calcium (LaCl3) prevented cell fusion in a dose-dependent manner. At the intracellular level, Ins(1,4,5)P3, an endogenous regulator of calcium release from intracellular stores, stimulated cell fusion within one hour following its addition. Treatment with agents that prevent the release of calcium from intracellular stores (TMB-8, CTC) also inhibited cell fusion in a dose-dependent manner. However, the non-specific augmentation of cytosolic calcium levels through the use of the ionophore A23187 inhibited cell fusion, and the amount inhibition was directly related to the drug concentration. Studies on cell morphology and growth plus results from reversibility experiments involving the ability to form macrocysts reveal that these effects are not due to non-specific drug toxicity. In total, these results suggest that the mobilization of calcium both from the extracellular environment and from intracellular stores important and is probably regulated during gamete cell fusion in D. discoideum.


1991 ◽  
Vol 261 (6) ◽  
pp. G1000-G1004 ◽  
Author(s):  
T. Mine ◽  
I. Kojima ◽  
E. Ogata

The mechanism by which histamine induces glycogenolysis was investigated in rat hepatocytes. Histamine induced stimulation of glucose output in hepatocytes in a dose-dependent manner. The maximal effect of the glycogenolytic action of histamine, which was approximately 60% of the maximal glucagon action, was obtained at 10(-6) M. These effects were inhibited by H1 receptor antagonists triprolidine hydrochloride and tripelennamine but not by a H2 receptor antagonist cimetidine. Histamine also increased the activity of phosphorylase a. When 10(-6) M histamine and 5 x 10(-9) M glucagon were added simultaneously, the actions of these two agents were additive. In contrast, there was no additivity when 10(-6) M histamine and 10(-8) M angiotensin II were added. Histamine did not increase adenosine 3',5'-cyclic monophosphate at any doses tested but induced a rapid increase in the cytoplasmic free calcium concentration ([Ca2+]c). Histamine increased [Ca2+]c even in the presence of 1 microM extracellular calcium, an observation suggesting that histamine caused calcium release from an intracellular calcium pool(s). When [3H]inositol-labeled hepatocytes were incubated with histamine, radioactivity in the D-myo-inositol trisphosphate fraction was rapidly increased. These results indicate that histamine acts on rat hepatocytes mainly via H1 receptors and stimulates glycogenolysis by activating the calcium messenger system.


Sign in / Sign up

Export Citation Format

Share Document