scholarly journals Mechanisms of L-Triiodothyronine-Induced Inhibition of Synaptosomal Na+-K+-ATPase Activity in Young Adult Rat Brain Cerebral Cortex

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pradip K. Sarkar ◽  
Avijit Biswas ◽  
Arun K. Ray ◽  
Joseph V. Martin

The role of thyroid hormones (TH) in the normal functioning of adult mammalian brain is unclear. Our studies have identified synaptosomal Na+-K+-ATPase as a TH-responsive physiological parameter in adult rat cerebral cortex. L-triiodothyronine (T3) and L-thyroxine (T4) both inhibited Na+-K+-ATPase activity (but not Mg2+-ATPase activity) in similar dose-dependent fashions, while other metabolites of TH were less effective. Although both T3and theβ-adrenergic agonist isoproterenol inhibited Na+-K+-ATPase activity in cerebrocortical synaptosomes in similar ways, theβ-adrenergic receptor blocker propranolol did not counteract the effect of T3. Instead, propranolol further inhibited Na+-K+-ATPase activity in a dose-dependent manner, suggesting that the effect of T3on synaptosomal Na+-K+-ATPase activity was independent ofβ-adrenergic receptor activation. The effect of T3on synaptosomal Na+-K+-ATPase activity was inhibited by theα2-adrenergic agonist clonidine and by glutamate. Notably, both clonidine and glutamate activateGi-proteins of the membrane second messenger system, suggesting a potential mechanism for the inhibition of the effects of TH. In this paper, we provide support for a nongenomic mechanism of action of TH in a neuronal membrane-related energy-linked process for signal transduction in the adult condition.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Gregory Hoeker ◽  
Ashleigh Hood ◽  
Rodolphe Katra ◽  
Steven Poelzing ◽  
Steven Pogwizd

Introduction: Sex differences in β-adrenergic receptor (β-AR) responsiveness are associated with female cardioprotection. We hypothesize that female (F) rabbits have reduced responsiveness to β-AR stimulation vs males (M), and that the degree and type of sex differences vary with the β-AR subtypes that are activated. Methods: Ventricular action potentials (AP) and intracellular calcium transients (CaT) were optically mapped from the epicardial surface of rabbit hearts during 3 Hz pacing. Spontaneous calcium release (SCR) and ectopic activity were elicited at 1, 3, and 5.5 Hz. β-responsiveness was assessed with the nonselective β-agonist isoproterenol (Iso, 1-316 nM), or β2-AR selective agonist zinterol (Zin, 10 nM). Results: At baseline, the time constant of CaT decay (τ) was faster in F than M (54.0±1.7 vs 62.1±3.0 ms; n=14, 14; p < 0.05), with no sex difference in CaT duration (CaD80). AP duration (APD90) was shorter in F than M (202.5±5.0 vs 218.2±5.7 ms; p < 0.05). Iso decreased τ, CaD80, and APD90 in a dose-dependent manner in both sexes (n = 5, 5 for F, M). Iso decreased τ to a lesser extent in F than M for 1 and 32-316 nM Iso (F = 11-32 ms, M = 23-48 ms; p < 0.05). The Iso-induced decrease in CaD80 was not significantly different in F than M at any dose. The Iso-induced decrease in APD90 was significantly less in F than M only at 316 nM Iso (75.5±8.7 ms vs 103.9±6.2 ms, p < 0.05). In contrast, there were no sex differences in the response to Zin for τ, CaD80, or APD90 (n = 6, 6 for F, M). Zin decreased τ by 7.2±2.0 ms in F vs 12.7±3.7 ms in M; CaD80 by 18.0±5.3% in F vs 21.1±8.0 ms in M; and APD90 by 24.9±8.5 ms in F vs 21.9±8.9 ms in M. SCR was observed in 50% (6/12) of hearts treated with Zin, whereas Iso elicited SCR in all hearts (10/10) with a dose threshold of 32 nM. No ectopic beats were observed with Zin (0/36 trials in 12 hearts). With Iso, ectopic activity was less frequent in F hearts (16%, 12/75 trials in 5 hearts) than in M hearts (41%, 26/68 trials in 5 hearts, p < 0.05). Conclusions: These results suggest that sex differences in AP and CaT depend on the dose of the agonist used and the β-AR subtypes that are activated. Elucidating nuances of sex differences in β-AR subtype physiology will provide a better understanding of the mechanisms of reduced β-responsiveness in F and its cardioprotective effects.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shanshan Wang ◽  
Yunliang Wang ◽  
Qingshan Lu ◽  
Xinshan Liu ◽  
Fuyu Wang ◽  
...  

Acidic (leucine-rich) nuclear phosphoprotein 32 family, member A (ANP32A), has multiple functions involved in neuritogenesis, transcriptional regulation, and apoptosis. However, whether ANP32A has an effect on the mammalian developing brain is still in question. In this study, it was shown that brain was the organ that expressed the most abundant ANP32A by human multiple tissue expression (MTE) array. The distribution of ANP32A in the different adult brain areas was diverse dramatically, with high expression in cerebellum, temporal lobe, and cerebral cortex and with low expression in pons, medulla oblongata, and spinal cord. The expression of ANP32A was higher in the adult brain than in the fetal brain of not only humans but also mice in a time-dependent manner. ANP32A signals were dispersed accordantly in embryonic mouse brain. However, ANP32A was abundant in the granular layer of the cerebellum and the cerebral cortex when the mice were growing up, as well as in the Purkinje cells of the cerebellum. The variation of expression levels and distribution of ANP32A in the developing brain would imply that ANP32A may play an important role in mammalian brain development, especially in the differentiation and function of neurons in the cerebellum and the cerebral cortex.


2005 ◽  
Vol 94 (6) ◽  
pp. 4131-4144 ◽  
Author(s):  
Ling Chen ◽  
Masahiro Sokabe

The effects of pregnenolone sulfate (PREGS), a putative neurosteroid, on the transmission of perforant path–granule cell synapses were investigated with an optical recording technique in rat hippocampal slices stained with voltage-sensitive dyes. Application of PREGS to the bath solution resulted in an acute augmentation of EPSP in a dose-dependent manner. The PREGS effect was dependent on the extracellular Ca2+ concentration ([Ca2+]o), but independent of NMDA receptor activation. PREGS caused a decrease in paired-pulse facilitation, which implies that PREGS positively modulates presynaptic neurotransmitter releases. Firmer support for this mechanism was that PREGS augmented the synaptically induced glial depolarization (SIGD) that reflects the activity of electrogenic glutamate transporters in glial cells during the uptake of released glutamate. The selective α7nAChR antagonist α-BGT or MLA prevented the SIGD increase by PREGS. Furthermore DMXB, a selective α7nAChR agonist, mimicked the PREGS effect on SIGD and antagonized the effect of PREGS. The presynaptic effect of PREGS was partially attenuated by the L-type Ca2+ channel (VGCC) blocker nifedipine. Based on these findings, we proposed a novel mechanism underlying the facilitated synaptic transmission by PREGS: this neurosteroid sensitizes presynaptic α7nAChR that is followed by an activation of L-type VGCC to increase the presynaptic glutamate release.


1992 ◽  
Vol 262 (3) ◽  
pp. H649-H653 ◽  
Author(s):  
J. A. Buczek-Thomas ◽  
S. R. Jaspers ◽  
T. B. Miller

The basis of catecholamine-induced activation of glycogen phosphorylase was investigated in adult rat cardiomyocytes isolated from normal and alloxan-diabetic animals. Cells derived from diabetic animals exhibited a hypersensitive response to epinephrine stimulation that was apparent 3 h after cell isolation and was further enhanced on maintenance of the myocytes in culture for 24 h. Normal cells initially lacked the hypersensitive response to epinephrine stimulation, although on maintenance of these cells in culture for 24 h, the hypersensitive response was acquired in vitro. To assess alpha- and beta-adrenergic mediation of the response, normal and diabetic cardiomyocytes were incubated with propranolol, a beta-blocker, before direct alpha 1-receptor stimulation with phenylephrine. Both normal and diabetic myocytes failed to undergo activation of phosphorylase in 3- or 24-h cell cultures. In addition, the effects of epinephrine on phosphorylase activation were completely inhibited by propranolol, whereas prazosin, an alpha-blocker, was unsuccessful. The present data suggest that the hypersensitive response of glycogen phosphorylase in normal and diabetic cardiomyocytes is solely mediated through beta-adrenergic receptor activation.


1997 ◽  
Vol 273 (4) ◽  
pp. H1677-H1687 ◽  
Author(s):  
Zhi-Qing Zhao ◽  
James C. Todd ◽  
Hiroki Sato ◽  
Xin-Liang Ma ◽  
J. Vinten-Johansen

This study tests the hypothesis that cardioprotection exerted by adenosine A2-receptor activation and neutrophil-related events involves stimulation of ATP-sensitive potassium (KATP) channels on neutrophils during reperfusion. The adenosine A2 agonist CGS-21680 (CGS) inhibited superoxide radical generation from isolated rabbit polymorphonuclear neutrophils (PMNs) in a dose-dependent manner from 17.7 ± 2.1 to 7.4 ± 1.3 nmol/5 × 106 PMNs ( P < 0.05). Pinacidil, a KATP-channel opener, partially inhibited superoxide radical production, which was completely reversed by glibenclamide (Glib). Incremental doses of Glib in combination with CGS (1 μM) did not alter CGS-induced inhibition of superoxide radical generation. CGS significantly reduced PMN adherence to the endothelial surface of aortic segments in a dose-dependent manner from 189 ± 8 to 50 ± 6 PMNs/mm2( P < 0.05), which was also not altered by incremental doses of Glib. Infusion of CGS (0.025 mg/kg) before reperfusion reduced infarct size from 29 ± 2% in the Vehicle group to 15 ± 1% in rabbits undergoing 30 min of ischemia and 120 min of reperfusion ( P< 0.05). Glib (0.3 mg/kg) did not change the infarct size (28 ± 2%) vs. the Vehicle group and did not attenuate infarct size reduction by CGS (16 ± 1%). Glib did not change blood glucose levels. Cardiac myeloperoxidase activity was decreased in the ischemic tissue of the CGS group (0.15 ± 0.03 U/100 mg tissue) compared with the Vehicle group (0.37 ± 0.05 U/100 mg tissue; P < 0.05). We conclude that adenosine A2 activation before reperfusion partially reduces infarct size by inhibiting neutrophil activity and that this effect does not involve KATP-channel stimulation.


2002 ◽  
Vol 173 (2) ◽  
pp. 325-334 ◽  
Author(s):  
A Muscella ◽  
S Greco ◽  
MG Elia ◽  
E Jimenez ◽  
C Storelli ◽  
...  

The effect of carbachol (Cch) on intracellular calcium concentration ([Ca2+]i) in eel enterocytes was examined using the fluorescent Ca2+ indicator fura-2. Cch caused a biphasic increase in [Ca2+]i, with an initial spike followed by a progressively decreasing level (over 6 min) to the initial, pre-stimulated, level. The effect of Cch was dose-dependent with a 7.5-fold increase in [Ca2+]i over basal level induced by the maximal dose of Cch (100 microM). In Ca2+-free/EGTA buffer the effect of Cch was less pronounced and the [Ca2+]i returned rapidly to basal levels. The increment of [Ca2+]i was dose-dependently attenuated in cells pre-treated with U73122, a specific inhibitor of phospholipase C, suggesting that the Cch-stimulated increment of [Ca2+]i required inositol triphosphate formation. In the presence of extracellular Ca2+, thapsigargin (TG), a specific microsomal Ca2+-ATPase inhibitor, caused a sustained rise in [Ca2+]i whereas in Ca2+-free medium the increase in [Ca2+]i was transient; in both cases, subsequent addition of Cch was without effect. When 2 mM CaCl2 were added to the cells stimulated with TG or with Cch in Ca2+-free medium, a rapid increase in [Ca2+]i was detected, corresponding to the capacitative Ca2+ entry. Thus, both TG and Cch depleted intracellular Ca2+ stores and stimulated influx of extracellular Ca2+ consistent with capacitative Ca2+ entry. K+ depolarization obtained with increasing concentrations of KCl in the extracellular medium induced a dose-related increase in [Ca2+]i which was blocked by 2 microM nifedipine, a non-specific L-type Ca2+ channel blocker. Nifedipine also changed significantly the height of the Ca2+ transient, and the rate of decrement to the pre-stimulated [Ca2+]i level, indicating that Ca2+ entry into enterocytes also occurs through an L-type voltage-dependent calcium channel pathway. We also show that isolated enterocytes stimulated with increasing Cch concentrations (0.1-1000 microM) showed a dose-dependent inhibition of the Na+/K+-ATPase activity. The threshold decrease was at 1 microM Cch; it reached a maximum at 100 microM (50.5% inhibition) and did not decrease further with the use of higher dose. The effect of Cch on Na+/K+-ATPase activity was dependent on both protein kinase C (PKC) and protein phosphatase calcineurin activation since the PKC inhibitor calphostin C abolished Cch effects, while the calcineurin inhibitor FK506 augmented Cch effect. Collectively, these data establish a functional pathway by which Cch can modulate the activity of the Na+/K+-ATPase through a PKC-dependent (calphostin C-sensitive) pathway and a calcineurin-dependent (FK506-sensitive) pathway.


2014 ◽  
Vol 307 (8) ◽  
pp. F921-F930 ◽  
Author(s):  
Meredith J. McGee ◽  
Zachary C. Danziger ◽  
Jeremy A. Bamford ◽  
Warren M. Grill

Electrical stimulation of pudendal afferents can inhibit bladder contractions and increase bladder capacity. Recent results suggest that stimulation-evoked bladder inhibition is mediated by a mechanism other than activation of sympathetic bladder efferents in the hypogastric nerve, generating α-adrenergic receptor-mediated inhibition at the vesical ganglia and/or β-adrenergic receptor-mediated direct inhibition of the detrusor muscle. We investigated several inhibitory neurotransmitters that may instead be necessary for stimulation-evoked inhibition and found that intravenous picrotoxin, a noncompetitive GABAA antagonist, significantly and reversibly blocked pudendal afferent stimulation-evoked inhibition of bladder contractions in a dose-dependent manner. Similarly, intravenous picrotoxin also blocked pudendal afferent stimulation-evoked inhibition of nociceptive bladder contractions evoked by acetic acid infusion. Furthermore, intrathecal administration of picrotoxin at the lumbosacral spinal cord also blocked bladder inhibition by pudendal afferent stimulation. On the other hand, glycinergic, adrenergic, or opioidergic mechanisms were not necessary for bladder inhibition evoked by pudendal afferent stimulation. These results identify a lumbosacral spinal GABAergic mechanism of bladder inhibition evoked by pudendal afferent stimulation.


1987 ◽  
Vol 252 (1) ◽  
pp. F39-F45 ◽  
Author(s):  
A. Aperia ◽  
A. Bertorello ◽  
I. Seri

We studied the effect of dopamine (DA) on Na+-K+-ATPase activity in proximal convoluted tubule (PCT) segments dissected from perfused rat kidneys. DA inhibited Na+-K+-ATPase activity in a dose-dependent manner. Inhibition was significant with 10(-7) M DA and maximal with 10(-4) M DA. The inhibition was reversible. Enzyme inhibition occurred in the presence of DA and a DA antagonist, metoclopramide, but not when 10(5) M of the DA1 and DA2 agonists fenoldopam mesylate and LY 171555 were added in the absence of DA. In PCT segments incubated with the DA precursor dopa, Na+-K+-ATPase activity was also inhibited. However, dopa did not inhibit the sodium pump if dopa decarboxylase activity was blocked with benserazide. These findings suggest an intracellular site of action of DA. In tubules incubated in different K concentrations, 10(-5) DA decreased the maximal activity (Vmax) and increased the Km. DA 10(-5) M caused an almost immediate swelling of PCT segments. Swelling did not occur in the presence of both DA and 10(-5) M amiloride. The DA-induced tubular swelling was probably due to inhibition of Na+-K+-ATPase-mediated Na+-transport. We conclude that in rat PCT segments, DA causes a rapid and reversible inhibition of apparent Na+-K+-ATPase activity and an apparent reduction in the affinity for K. The site of action appears to be intracellular.


1998 ◽  
Vol 274 (4) ◽  
pp. E627-E633 ◽  
Author(s):  
David S. Ludwig ◽  
Kathleen G. Mountjoy ◽  
Jeffrey B. Tatro ◽  
Jennifer A. Gillette ◽  
Robert C. Frederich ◽  
...  

Melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH) demonstrate opposite actions on skin coloration in teleost fish. Both peptides are present in the mammalian brain, although their specific physiological roles remain largely unknown. In this study, we examined the interactions between MCH and α-MSH after intracerebroventricular administration in rats. MCH increased food intake in a dose-dependent manner and lowered plasma glucocorticoid levels through a mechanism involving ACTH. In contrast, α-MSH decreased food intake and increased glucocorticoid levels. MCH, at a twofold molar excess, antagonized both actions of α-MSH. α-MSH, at a threefold molar excess, blocked the orexigenic properties of MCH. MCH did not block α-MSH binding or the ability of α-MSH to induce cAMP in cells expressing either the MC3 or MC4 receptor, the principal brain α-MSH receptor subtypes. These data suggest that MCH and α-MSH exert opposing and antagonistic influences on feeding behavior and the stress response and may function in a coordinate manner to regulate metabolism through a novel mechanism mediated in part by an MCH receptor.


1994 ◽  
Vol 77 (5) ◽  
pp. 2275-2284 ◽  
Author(s):  
M. D. Burton ◽  
K. Nouri ◽  
S. Baichoo ◽  
N. Samuels-Toyloy ◽  
H. Kazemi

Cholinergic transmission may be part of the normal neurochemical processes that support spontaneous ventilation. If this is true, perturbations in acetylcholine (ACh) turnover should alter ventilatory output in a predictable manner. With the use of the isolated perfused brain stem-spinal axis from the neonatal rat, the effects of modifiers of ACh release and blockers of muscarinic receptors on spontaneous C4 (phrenic) output were determined. Vesamicol and cetiedil, inhibitors of ACh release, caused depression and cessation of the C4 output in a dose-dependent manner when added to the perfusate. Muscarinic blockers, particularly M1 and M3 blockers, caused a similar depression. 4-Aminopyridine and tetraethylammonium chloride, facilitators of ACh release, caused stimulation of C4 (phrenic) output. The depressive effects of the blockers and inhibitors were reversible with facilitation of ACh release except in the case of cetiedil. These findings are consistent with the view that the synaptic turnover of endogenous ACh is an important part of the normal neurochemical process that supports and modulates ventilation.


Sign in / Sign up

Export Citation Format

Share Document