Abstract T P370: Blood Transfusions in Pediatric Sickle Cell Disease Normalize Cerebral Blood Flow While Maintaining Constant Cerebral Oxygen Metabolism

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Andria L Ford ◽  
Hongyu An ◽  
Kristin Guilliams ◽  
Melanie Fields ◽  
Cihat Eldeniz ◽  
...  

Background: Chronic blood transfusions (Tx) reduces stroke risk in pediatric sickle cell disease (SCD). Cerebral blood flow (CBF) is elevated in SCD, likely representing a compensatory mechanism to maintain cerebral oxygen metabolism (CMRO2) in the setting of reduced arterial oxygen content (CaO2) from chronic anemia. When exhausted compensatory mechanisms are unable to meet oxygen demands, stroke ensues. We measured MR-derived CBF and oxygen extraction fraction (OEF) pre- and post-Tx, hypothesizing that Tx ‘resets’ the CBF baseline by increasing CaO2 via increased hemoglobin (Hb), while maintaining cerebral oxygen delivery and metabolism. Methods: SCD children on chronic Tx were enrolled in a prospective, observational MRI study. MR-CBF and MR-OEF were acquired before and 2 hours after exchange Tx. MR-CBF and MR-OEF were measured using pseudocontinuous arterial spin labelling and a novel asymmetric spin echo sequence, respectively. CaO2 =1.35 x [Hb] x SaO2. CMRO2 = CaO2 x CBF x OEF. Results: Two SCD children underwent MRI pre- and post-Tx (six more are anticipated prior to ISC). For subject #1 (18 yo F with overt stroke), mean global CBF was 128 and 98 ml/min/100g pre- and post-Tx, respectively, indicating a 24% CBF reduction. For subject #2 (6 yo F with elevated transcranial Doppler velocities), mean global CBF was 189 and 129 ml/min/100g pre- and post-Tx, respectively, a 32% CBF reduction (Fig). Both Hb and CaO2 were increased after Tx, resulting in unchanged oxygen delivery (CaO2 x CBF) post-Tx. Moreover, OEF and CMRO2 were not significantly different pre- and post-Tx, consistent with our hypothesis that CBF increases to maintain oxygen delivery. Conclusions: Elevated CBF is likely a compensatory mechanism to maintain constant oxygen delivery in SCD children who have chronically low CaO2. In our subjects, Tx improved CaO2, allowing CBF to normalize. This reduced hemodynamic stress likely contributes to the lower stroke risk in chronically transfused SCD children.

Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Andria L Ford ◽  
Kristin P Guilliams ◽  
Melanie E Fields ◽  
Dustin K Ragan ◽  
Cihat Eldeniz ◽  
...  

Background: While imaging biomarkers guide stroke prevention strategies in children with sickle cell (SC) disease, none have been adequately studied in adults. High oxygen extraction (OEF) predicts stroke in non-SC adults with carotid occlusion, while low oxygen metabolism (CMRO 2 ) predicts tissue at imminent risk in acute ischemic stroke. We hypothesized that metrics of cerebral metabolism: (1) differ between SC adults with and without stroke and (2) correlate with infarct burden. Methods: A prospective MRI study enrolled 37 adults (28 ± 8 yr) from SC clinic into 4 groups: (1) 9 age/race matched healthy controls, (2) 6 SC adults without infarcts, (3) 15 SC adults with infarcts (infarct volume 7.4 ± 17.5 ml), and (4) 7 SC adults on chronic transfusions (Tx) (infarct volume 3.6 ± 6.6 ml). Arterial spin labelling and asymmetric spin echo measured voxel-wise cerebral blood flow (CBF) and OEF. CMRO 2 = CBF x OEF x blood oxygen content. Infarcts were delineated on FLAIR. OEF, CBF, and CMRO 2 (excluding infarcted tissue) were compared: between groups 1-3 (Kruskal-Wallis) and in group 4 between pre- and post-tx scans (Signed Rank). An ROI defined by high OEF within the deep white matter (a region at high stroke risk in SC) was applied to group 3. OEF, CBF, and CMRO 2 within the ROI were correlated with hemispheric infarct volume (IV) (Spearman’s ρ ). Results: Whole brain OEF showed a stepwise increase from controls, to SC adults without stroke, to SC adults with stroke (P<.001). SC adults on chronic Tx had intermediate OEF, with lowering of OEF post-Tx (Fig A). CBF and CMRO 2 were similar for SC adults with and without stroke (Fig B, C). High OEF and low CBF/CMRO 2 in the ROI correlated with hemispheric infarct burden: IV vs. OEF ( ρ =.40, P=.043); IV vs. CBF ( ρ =-.61, P=.002); and IV vs. CMRO 2 ( ρ =-.50, P=.016). Conclusion: Global OEF holds promise to stratify stroke risk in SC disease. Regional metrics of cerebral oxygen metabolism may indicate tissue-specific metabolic stress at imminent risk of infarction.


2013 ◽  
Vol 114 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Zachary M. Smith ◽  
Erin Krizay ◽  
Jia Guo ◽  
David D. Shin ◽  
Miriam Scadeng ◽  
...  

Acute mountain sickness (AMS) is a common condition occurring within hours of rapid exposure to high altitude. Despite its frequent occurrence, the pathophysiological mechanisms that underlie the condition remain poorly understood. We investigated the role of cerebral oxygen metabolism (CMRO2) in AMS. The purpose of this study was to test 1) if CMRO2 changes in response to hypoxia, and 2) if there is a difference in how individuals adapt to oxygen metabolic changes that may determine who develops AMS and who does not. Twenty-six normal human subjects were recruited into two groups based on Lake Louise AMS score (LLS): those with no AMS (LLS ≤ 2), and those with unambiguous AMS (LLS ≥ 5). [Subjects with intermediate scores (LLS 3–4) were not included.] CMRO2 was calculated from cerebral blood flow and arterial-venous difference in O2 content. Cerebral blood flow was measured using arterial spin labeling MRI; venous O2 saturation was calculated from the MRI of transverse relaxation in the superior sagittal sinus. Arterial O2 saturation was measured via pulse oximeter. Measurements were made during normoxia and after 2-day high-altitude exposure at 3,800 m. In all subjects, CMRO2 increased with sustained high-altitude hypoxia [1.54 (0.37) to 1.82 (0.49) μmol·g−1·min−1, n = 26, P = 0.045]. There was no significant difference in CMRO2 between AMS and no-AMS groups. End-tidal Pco2 was significantly reduced during hypoxia. Low arterial Pco2 is known to increase neural excitability, and we hypothesize that the low arterial Pco2 resulting from ventilatory acclimatization causes the observed increase in CMRO2.


2012 ◽  
Vol 323 (1-2) ◽  
pp. 173-177 ◽  
Author(s):  
Zhaoxia Wang ◽  
Jiangxi Xiao ◽  
Sheng Xie ◽  
Danhua Zhao ◽  
Xiwei Liu ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 773-773
Author(s):  
Craig A Branch ◽  
Min-Hui Cui ◽  
Sangeetha Thangaswamy ◽  
Nicholas Branch ◽  
Seetharama Acharya

Abstract Background: Extension Arm Facilitated (EAF) PEG Alb and EAF PEG Hb are low viscosity semisynthetic hybrid biopolymers which are isoviscous with conventional colloidal plasma expanders but are distinguished from them because they are supra perfusion resuscitation fluids (SPF's). These SPF's have longer half-life, are pseudoplastic and facilitate the production of NO in vivo by increasing shear thinning of RBC's. We recently tested two SPF's, EAF-P5K6 Alb and P3K6 Hb in WT mice, and in two Tg models of Sickle Cell Disease (SCD): the Berkley mouse (BERK), which is a severe anemic model exhibiting a high impairment of systemic blood flow, and in the NY1DD mouse which only exhibits extensive blood flow impairment when challenged with hypoxia followed by reoxygenation. Here we present a comparison of the systemic and cerebral effects of the EAF PEGgylated SPF's. Methods: A single intraperitoneal 10% top-load dose of either drug was given to WT, NY1DD or BERK mice. In NY1DD mice SPF's were administered after hypoxia at the beginning of reoxygenation (8% for 18 hours), while SPF's were given to WT or BERK mice under normoxia conditions. Three hours after the administration of drug, in vivo intra-vital microscopic observation of post-capillary venules in cremaster muscle was performed. In a separate group of WT and BERK animals, we employed MRI to examine the therapeutic efficacy of a single dose of the same SPF's by measuring cerebral blood flow (CBF) and sufficiency of cerebral oxygen delivery (B OLD MRI R esponse to a brief period of H yperO xia, BRHO) serially following treatment. Results: In NY1DD mice, EAF P5K6 Alb significantly attenuated hopoxia reoxygenation induced impairment of cremaster blood flow and associated vaso-occlusion, while EAF P3K6 Hb completely neutralized the experimentally induced sickle crisis. In BERK mice, both SPF's had comparable effects: the chronic state of vaso-occluison as observed in the cremaster muscle was eliminated completely by EAF P3K6-Hb. In MRI experiments in WT mice, both drug candidates resulted in increases in CBF, which resolved over 1 week. The increased CBF was accompanied by decreased BRHO consistent with a pseudo 'luxury perfusion' afforded by the accentuated delivery of oxygen. On the other hand, when BERK mice were treated with EAF P5K6 Alb or EAF P3K6 Hb, CBF trended lower, but with the Alb SPF, BRHO increased, and the Hb SPF, BHRO was unchanged, suggesting that the slightly reduced CBF led to increased O2 deficiency with the PEG-Alb, but not with the PEG-Hb. Conclusion : In WT mice, SPF's increase CBF in the brain where the facility to modify NO production is intact, resulting in over delivery of oxygen as confirmed by reductions in deoxy-Hb levels by BROH imaging, confirming supraperfusionary properties of the SPF's. In SCD animals, both SPF's attenuate muscle vaso-occlusion and restore blood flow. In addition, in experimentally induced sickle crisis (NY1DD), EAF P3K6 Hb maintained O2 level in the plasma and attenuate depolymerization of deoxyHb. In the severely anemic BERK mouse, EAF P5K6-Alb slightly attenuated CBF, likely due to reduced cerebral perfusion pressure (CPP), while O2 extraction increased suggesting that reduced CBF was detrimental to cerebral oxygen delivery. This effect was remediated when EAF P3K6-Hb is administered, which afforded additional oxygen to offset the losses due to reduced CBF. EAF P3K6 Hb led to slightly reduced CBF in NY1DD and BERK mice to levels approaching that obtained after administering EAF P5K6 Alb, but without inducing further oxygen debt. EAF P3K6 Hb appears to be the choice agent as this SPF facilitates increased delivery of O2 to hypoxic tissues thereby neutralizing painful crisis, and protects the brain from further ischemic insults. The influence of SCD on CBF by MRI is opposite to the decrease in blood flow observed in the systemic circulation. The infusion of SFA's increased flow in the systemic circulation, but reduced CBF in a disease dependent fashion. These divergent responses suggest the need for oxygen supplementation when developing SCD therapeutics. In particular, these studies suggest that high oxygen affinity PEG-Hb may have increased the therapeutic efficacy of this SPF by preventing the complete deoxygenation of HbS in the RBC. An antioxidant conjugated to the SFP, such as quercetin, could attenuate the hypoxia reoxygenation induced acute crisis and improve the efficacy of SCD therapeutics. Disclosures No relevant conflicts of interest to declare.


HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 324-325
Author(s):  
L. Vaclavu ◽  
E. Petersen ◽  
H. Mutsaerts ◽  
J. Petr ◽  
C. Majoie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document