Strategic Modulation of Cognitive Control

2007 ◽  
Vol 19 (8) ◽  
pp. 1302-1315 ◽  
Author(s):  
Ovidiu V. Lungu ◽  
Tao Liu ◽  
Tobias Waechter ◽  
Daniel T. Willingham ◽  
James Ashe

The neural substrate of cognitive control is thought to comprise an evaluative component located in the anterior cingulate cortex (ACC) and an executive component in the prefrontal cortex (PFC). The control mechanism itself is mainly local, triggered by response conflict (monitored by the ACC) and involving the allocation of executive resources (recruited by the PFC) in a trial-to-trial fashion. However, another way to achieve control would be to use a strategic mechanism based on long-term prediction of upcoming events and on a chronic response strategy that ignores local features of the task. In the current study, we showed that such a strategic control mechanism was based on a functional dissociation or complementary relationship between the ACC and the PFC. When information in the environment was available to make predictions about upcoming stimuli, local task features (e.g., response conflict) were no longer used as a control signal. We suggest that having separate control mechanisms based on local or global task features allows humans to be persistent in pursuing their goals, yet flexible enough to adapt to changes in the environment.

2007 ◽  
Vol 19 (2) ◽  
pp. 275-286 ◽  
Author(s):  
Giuseppe di Pellegrino ◽  
Elisa Ciaramelli ◽  
Elisabetta Làdavas

The contribution of the medial prefrontal cortex, particularly the anterior cingulate cortex (ACC), to cognitive control remains controversial. Here, we examined whether the rostral ACC is necessary for reactive adjustments in cognitive control following the occurrence of response conflict [Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. Conflict monitoring and cognitive control. Psychological Review, 108, 624–652, 2001]. To this end, we assessed 8 patients with focal lesions involving the rostral sector of the ACC (rACC patients), 6 patients with lesions outside the frontal cortex (non-FC patients), and 11 healthy subjects on a variant of the Simon task in which levels of conflict were manipulated on a trial-by-trial basis. More specifically, we compared Simon effects (i.e., the difference in performance between congruent and incongruent trials) on trials that were preceded by high-conflict (i.e., incongruent) trials with those on trials that were preceded by low-conflict (i.e., congruent) trials. Normal controls and non-FC patients showed a reduction of the Simon effect when the preceding trial was incongruent, suggestive of an increase in cognitive control in response to the occurrence of response conflict. In contrast, rACC patients attained comparable Simon effects following congruent and incongruent events, indicating a failure to modulate their performance depending on the conflict level generated by the preceding trial. Furthermore, damage to the rostral ACC impaired the posterror slowing, a further behavioral phenomenon indicating reactive adjustments in cognitive control. These results provide insights into the functional organization of the medial prefrontal cortex in humans and its role in the dynamic regulation of cognitive control.


2021 ◽  
Vol 118 (43) ◽  
pp. e2109208118
Author(s):  
Liyang Sai ◽  
Gabriele Bellucci ◽  
Chongxiang Wang ◽  
Genyue Fu ◽  
Julia A. Camilleri ◽  
...  

Numerous studies have sought proof of whether people are genuinely honest by testing whether cognitive control mechanisms are recruited during honest and dishonest behaviors. The underlying assumption is: Deliberate behaviors require cognitive control to inhibit intuitive responses. However, cognitive control during honest and dishonest behaviors can be required for other reasons than deliberation. Across 58 neuroimaging studies (1,211 subjects), we investigated different forms of honest and dishonest behaviors and demonstrated that many brain regions previously implicated in dishonesty may reflect more general cognitive mechanisms. We argue that the motivational/volitional dimension is central to deliberation and provide evidence that motivated dishonest behaviors recruit the perigenual anterior cingulate cortex. This work questions the view that cognitive control is a hallmark of dishonesty.


Author(s):  
David Beltrán ◽  
Bo Liu ◽  
Manuel de Vega

AbstractNegation is known to have inhibitory consequences for the information under its scope. However, how it produces such effects remains poorly understood. Recently, it has been proposed that negation processing might be implemented at the neural level by the recruitment of inhibitory and cognitive control mechanisms. On this line, this manuscript offers the hypothesis that negation reuses general-domain mechanisms that subserve inhibition in other non-linguistic cognitive functions. The first two sections describe the inhibitory effects of negation on conceptual representations and its embodied effects, as well as the theoretical foundations for the reuse hypothesis. The next section describes the neurophysiological evidence that linguistic negation interacts with response inhibition, along with the suggestion that both functions share inhibitory mechanisms. Finally, the manuscript concludes that the functional relation between negation and inhibition observed at the mechanistic level could be easily integrated with predominant cognitive models of negation processing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Okamura ◽  
Yutaka Osada ◽  
Shota Nishijima ◽  
Shinto Eguchi

AbstractNonlinear phenomena are universal in ecology. However, their inference and prediction are generally difficult because of autocorrelation and outliers. A traditional least squares method for parameter estimation is capable of improving short-term prediction by estimating autocorrelation, whereas it has weakness to outliers and consequently worse long-term prediction. In contrast, a traditional robust regression approach, such as the least absolute deviations method, alleviates the influence of outliers and has potentially better long-term prediction, whereas it makes accurately estimating autocorrelation difficult and possibly leads to worse short-term prediction. We propose a new robust regression approach that estimates autocorrelation accurately and reduces the influence of outliers. We then compare the new method with the conventional least squares and least absolute deviations methods by using simulated data and real ecological data. Simulations and analysis of real data demonstrate that the new method generally has better long-term and short-term prediction ability for nonlinear estimation problems using spawner–recruitment data. The new method provides nearly unbiased autocorrelation even for highly contaminated simulated data with extreme outliers, whereas other methods fail to estimate autocorrelation accurately.


2019 ◽  
Vol 31 (7) ◽  
pp. 1079-1090 ◽  
Author(s):  
Peter S. Whitehead ◽  
Mathilde M. Ooi ◽  
Tobias Egner ◽  
Marty G. Woldorff

The contents of working memory (WM) guide visual attention toward matching features, with visual search being faster when the target and a feature of an item held in WM spatially overlap (validly cued) than when they occur at different locations (invalidly cued). Recent behavioral studies have indicated that attentional capture by WM content can be modulated by cognitive control: When WM cues are reliably helpful to visual search (predictably valid), capture is enhanced, but when reliably detrimental (predictably invalid), capture is attenuated. The neural mechanisms underlying this effect are not well understood, however. Here, we leveraged the high temporal resolution of ERPs time-locked to the onset of the search display to determine how and at what processing stage cognitive control modulates the search process. We manipulated predictability by grouping trials into unpredictable (50% valid/invalid) and predictable (100% valid, 100% invalid) blocks. Behavioral results confirmed that predictability modulated WM-related capture. Comparison of ERPs to the search arrays showed that the N2pc, a posteriorly distributed signature of initial attentional orienting toward a lateralized target, was not impacted by target validity predictability. However, a longer latency, more anterior, lateralized effect—here, termed the “contralateral attention-related negativity”—was reduced under predictable conditions. This reduction interacted with validity, with substantially greater reduction for invalid than valid trials. These data suggest cognitive control over attentional capture by WM content does not affect the initial attentional-orienting process but can reduce the need to marshal later control mechanisms for processing relevant items in the visual world.


Sign in / Sign up

Export Citation Format

Share Document