Orienting Attention in Time Activates Left Intraparietal Sulcus for Both Perceptual and Motor Task Goals

2011 ◽  
Vol 23 (11) ◽  
pp. 3318-3330 ◽  
Author(s):  
Karen Davranche ◽  
Bruno Nazarian ◽  
Franck Vidal ◽  
Jennifer Coull

Attention can be directed not only toward a location in space but also to a moment in time (“temporal orienting”). Temporally informative cues allow subjects to predict when an imminent event will occur, thereby speeding responses to that event. In contrast to spatial orienting, temporal orienting preferentially activates left inferior parietal cortex. Yet, left parietal cortex is also implicated in selective motor attention, suggesting its activation during temporal orienting could merely reflect incidental engagement of preparatory motor processes. Using fMRI, we therefore examined whether temporal orienting would still activate left parietal cortex when the cued target required a difficult perceptual discrimination rather than a speeded motor response. Behaviorally, temporal orienting improved accuracy of target identification as well as speed of target detection, demonstrating the general utility of temporal cues. Crucially, temporal orienting selectively activated left inferior parietal cortex for both motor and perceptual versions of the task. Moreover, conjunction analysis formally revealed a region deep in left intraparietal sulcus (IPS) as common to both tasks, thereby identifying it as a core neural substrate for temporal orienting. Despite the context-independent nature of left IPS activation, complementary psychophysiological interaction analysis revealed how the functional connectivity of left IPS changed as a function of task context. Specifically, left IPS activity covaried with premotor activity during motor temporal orienting but with visual extrastriate activity during perceptual temporal orienting, thereby revealing a cooperative network that comprises both temporal orienting and task-specific processing nodes.

2009 ◽  
Vol 21 (9) ◽  
pp. 1720-1735 ◽  
Author(s):  
Ian M. Lyons ◽  
Daniel Ansari

Although significant insights into the neural basis of numerical and mathematical processing have been made, the neural processes that enable abstract symbols to become numerical remain largely unexplored in humans. In the present study, adult participants were trained to associate novel symbols with nonsymbolic numerical magnitudes (arrays of dots). Functional magnetic resonance imaging was used to examine the neural correlates of numerical comparison versus recognition of the novel symbols after each of two training stages. A left-lateralized fronto-parietal network, including the intraparietal sulcus, the precuneus, and the dorsal prefrontal cortex, was more active during numerical comparison than during perceptual recognition. In contrast, a network including bilateral temporal–occipital regions was more active during recognition than comparison. A whole-brain three-way interaction revealed that those individuals who had higher scores on a postscan numerical task (measuring their understanding of the global numerical organization of the novel symbols) exhibited increasing segregation between the two tasks in the bilateral intraparietal sulci as a function of increased training. Furthermore, whole-brain regression analysis showed that activity in the left intraparietal sulcus was systematically related to the effect of numerical distance on accuracy. These data provide converging evidence that parietal and left prefrontal cortices are involved in learning to map numerical quantities onto visual symbols. Only the parietal cortex, however, appeared systematically related to the degree to which individuals learned to associate novel symbols with their numerical referents. We conclude that the left parietal cortex, in particular, may play a central role in imbuing visual symbols with numerical meaning.


2008 ◽  
Vol 1 (6) ◽  
pp. 493-495 ◽  
Author(s):  
Vamseemohan Beeram ◽  
Sundaram Challa ◽  
Prasad Vannemreddy

✓ Craniocerebral maduromycetoma is extremely rare. The authors describe a case of maduromycetoma involving the left parietal cortex, bone, and subcutaneous tissue in a young male farm laborer who presented with left parietal scalp swelling that had progressed into a relentlessly discharging sinus. Computed tomography (CT) scanning of his brain revealed osteomyelitis of the parietal bone with an underlying homogeneously enhancing tumor. Intraoperatively, the mass was revealed to be a black lesion involving the bone, dura mater, and underlying cerebral cortex. It was friable and separated from the surrounding brain by a thick gliotic scar. Gross-total excision was performed, and the patient was placed on a 6-week regimen of itraconazole. To the authors' knowledge, this is the first instance of cerebral mycetoma with CT findings reported in the literature.


Cortex ◽  
2013 ◽  
Vol 49 (10) ◽  
pp. 2927-2934 ◽  
Author(s):  
Alexia Bourgeois ◽  
Ana B. Chica ◽  
Antoni Valero-Cabré ◽  
Paolo Bartolomeo

2021 ◽  
Vol 11 (4) ◽  
pp. 494
Author(s):  
Lysianne Beynel ◽  
Ethan Campbell ◽  
Maria Naclerio ◽  
Jeffrey T. Galla ◽  
Angikar Ghosal ◽  
...  

While repetitive transcranial magnetic stimulation (rTMS) is widely used to treat psychiatric disorders, innovations are needed to improve its efficacy. An important limitation is that while psychiatric disorders are associated with fronto-limbic dysregulation, rTMS does not have sufficient depth penetration to modulate affected subcortical structures. Recent advances in task-related functional connectivity provide a means to better link superficial and deeper cortical sources with the possibility of increasing fronto-limbic modulation to induce stronger therapeutic effects. The objective of this pilot study was to test whether task-related, connectivity-based rTMS could modulate amygdala activation through its connectivity with the medial prefrontal cortex (mPFC). fMRI was collected to identify a node in the mPFC showing the strongest connectivity with the amygdala, as defined by psychophysiological interaction analysis. To promote Hebbian-like plasticity, and potentially stronger modulation, 5 Hz rTMS was applied while participants viewed frightening video-clips that engaged the fronto-limbic network. Significant increases in both the mPFC and amygdala were found for active rTMS compared to sham, offering promising preliminary evidence that functional connectivity-based targeting may provide a useful approach to treat network dysregulation. Further research is needed to better understand connectivity influences on rTMS effects to leverage this information to improve therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document