Cortical control of Inhibition of Return: Exploring the causal contributions of the left parietal cortex

Cortex ◽  
2013 ◽  
Vol 49 (10) ◽  
pp. 2927-2934 ◽  
Author(s):  
Alexia Bourgeois ◽  
Ana B. Chica ◽  
Antoni Valero-Cabré ◽  
Paolo Bartolomeo
2008 ◽  
Vol 1 (6) ◽  
pp. 493-495 ◽  
Author(s):  
Vamseemohan Beeram ◽  
Sundaram Challa ◽  
Prasad Vannemreddy

✓ Craniocerebral maduromycetoma is extremely rare. The authors describe a case of maduromycetoma involving the left parietal cortex, bone, and subcutaneous tissue in a young male farm laborer who presented with left parietal scalp swelling that had progressed into a relentlessly discharging sinus. Computed tomography (CT) scanning of his brain revealed osteomyelitis of the parietal bone with an underlying homogeneously enhancing tumor. Intraoperatively, the mass was revealed to be a black lesion involving the bone, dura mater, and underlying cerebral cortex. It was friable and separated from the surrounding brain by a thick gliotic scar. Gross-total excision was performed, and the patient was placed on a 6-week regimen of itraconazole. To the authors' knowledge, this is the first instance of cerebral mycetoma with CT findings reported in the literature.


1994 ◽  
Vol 72 (1) ◽  
pp. 139-149 ◽  
Author(s):  
D. S. Barth ◽  
J. Kithas ◽  
S. Di

1. Two 8 x 8 channel microelectrode arrays were positioned over 3.5 x 3.5 mm2 areas in homologous regions of right and left parietal cortex of four rats. Potentials were evoked by delivering epicortical electrical stimulation to each electrode on one hemisphere while mapping the commissural response from the contralateral array. Spatial distributions of the electrically evoked potential (EECP) complex were compared directly with cytochrome oxidase-stained sections of the recorded region. 2. Electrode sites most capable of eliciting a commissural EECP were arranged along a diagonal band extending medially from the rostral to caudal region of each electrode array, approximating the pattern of dysgranular cortex separating primary auditory (Te1) from primary somatosensory (Par1) cortex. Electrode sites in the rostromedial and caudolateral region were ineffectual in eliciting an EECP in either hemisphere. Stimulation sites within secondary visual cortex (Oc2L) also produced strong responses. Only weak responses were elicited from stimulation of Te1 and no EECP could be evoked when stimulating within Par1. 3. When an EECP in the maximally sensitive diagonal region was elicited, its spatial distribution was typically asymmetrical throughout the recording array; the response was largest along a diagonal region also extending medially from the rostral to caudal area of each electrode array. Thus the pattern of EECP in each hemisphere closely matched the pattern of electrically excitable regions in the contralateral hemisphere. 4. The EECP was usually heterogeneous. EECP distributions within the strongly responding diagonal area often formed two regions of maximum amplitude separated by a less active zone. Although responses in Te1 were significantly weaker than those in the adjacent dysgranular cortex, they also revealed a heterogeneous spatial distribution with multiple closely spaced maxima. Only responses in Oc2L appeared consistently homogeneous, with a single maximum representing the EECP. 5. These results provide functional evidence supporting a model of parietal cortex in which there are two basic types of recipient regions, densely granular regions, which are the termination sites of specific thalamocortical fibers, and dysgranular or agranular regions, which receive both ipsilateral and contralateral projections. The functional parceling of rodent parietal cortex on the basis of the spatial and temporal distribution of the epicortical evoked potential complex may be superimposed onto the anatomic parceling into granular and dysgranular zones. Implications for stages of sensory information processing are discussed.


2011 ◽  
Vol 23 (11) ◽  
pp. 3318-3330 ◽  
Author(s):  
Karen Davranche ◽  
Bruno Nazarian ◽  
Franck Vidal ◽  
Jennifer Coull

Attention can be directed not only toward a location in space but also to a moment in time (“temporal orienting”). Temporally informative cues allow subjects to predict when an imminent event will occur, thereby speeding responses to that event. In contrast to spatial orienting, temporal orienting preferentially activates left inferior parietal cortex. Yet, left parietal cortex is also implicated in selective motor attention, suggesting its activation during temporal orienting could merely reflect incidental engagement of preparatory motor processes. Using fMRI, we therefore examined whether temporal orienting would still activate left parietal cortex when the cued target required a difficult perceptual discrimination rather than a speeded motor response. Behaviorally, temporal orienting improved accuracy of target identification as well as speed of target detection, demonstrating the general utility of temporal cues. Crucially, temporal orienting selectively activated left inferior parietal cortex for both motor and perceptual versions of the task. Moreover, conjunction analysis formally revealed a region deep in left intraparietal sulcus (IPS) as common to both tasks, thereby identifying it as a core neural substrate for temporal orienting. Despite the context-independent nature of left IPS activation, complementary psychophysiological interaction analysis revealed how the functional connectivity of left IPS changed as a function of task context. Specifically, left IPS activity covaried with premotor activity during motor temporal orienting but with visual extrastriate activity during perceptual temporal orienting, thereby revealing a cooperative network that comprises both temporal orienting and task-specific processing nodes.


2003 ◽  
Vol 15 (7) ◽  
pp. 1002-1018 ◽  
Author(s):  
Jeffrey M. Zacks ◽  
Jean M. Vettel ◽  
Pascale Michelon

Human spatial reasoning may depend in part on two dissociable types of mental image transformations: objectbased transformations, in which an object is imagined to move in space relative to the viewer and the environment, and perspective transformations, in which the viewer imagines the scene from a different vantage point. This study measured local brain activity with event-related fMRI while participants were instructed to either imagine an array of objects rotating (an object-based transformation) or imagine themselves rotating around the array (a perspective transformation). Object-based transformations led to selective increases in right parietal cortex and decreases in left parietal cortex, whereas perspective transformations led to selective increases in left temporal cortex. These results argue against the view that mental image transformations are performed by a unitary neural processing system, and they suggest that different overlapping systems are engaged for different image transformations.


2012 ◽  
Vol 50 (5) ◽  
pp. 800-809 ◽  
Author(s):  
Alexia Bourgeois ◽  
Ana B. Chica ◽  
Raffaella Migliaccio ◽  
Michel Thiebaut de Schotten ◽  
Paolo Bartolomeo

Neuroreport ◽  
2009 ◽  
Vol 20 (14) ◽  
pp. 1295-1299 ◽  
Author(s):  
Kaia L. Vilberg ◽  
Michael D. Rugg

Sign in / Sign up

Export Citation Format

Share Document