scholarly journals Coordination of Pupil and Saccade Responses by the Superior Colliculus

2021 ◽  
Vol 33 (5) ◽  
pp. 919-932
Author(s):  
Chin-An Wang ◽  
Douglas P. Munoz

Abstract The appearance of a salient stimulus evokes saccadic eye movements and pupil dilation as part of the orienting response. Although the role of the superior colliculus (SC) in saccade and pupil dilation has been established separately, whether and how these responses are coordinated remains unknown. The SC also receives global luminance signals from the retina, but whether global luminance modulates saccade and pupil responses coordinated by the SC remains unknown. Here, we used microstimulation to causally determine how the SC coordinates saccade and pupil responses and whether global luminance modulates these responses by varying stimulation frequency and global luminance in male monkeys. Stimulation frequency modulated saccade and pupil responses, with trial-by-trial correlations between the two responses. Global luminance only modulated pupil, but not saccade, responses. Our results demonstrate an integrated role of the SC on coordinating saccade and pupil responses, characterizing luminance independent modulation in the SC, together elucidating the differentiated pathways underlying this behavior.

2020 ◽  
Author(s):  
Chin-An Wang ◽  
Douglas P. Munoz

AbstractThe appearance of a salient stimulus evokes saccadic eye movements and pupil dilation as part of the orienting response. Although the role of the superior colliculus (SC) in saccade and pupil dilation has been established separately, whether and how these responses are coordinated remains unknown. The SC also receives global luminance signals from the retina, but whether global luminance modulates saccade and pupil responses coordinated by the SC remains unknown. Here, we used microstimulation to causally determine how the SC coordinates saccade and pupil responses, and whether global luminance modulates these responses by varying stimulation frequency and global luminance in male monkeys. Stimulation frequency modulated saccade and pupil responses, with trial-by-trial correlations between the two responses. Global luminance only modulated pupil, but not, saccade responses. Our results demonstrate an integrated role of the SC on coordinating saccade and pupil responses, characterizing luminance independent modulation in the SC, together elucidating the differentiated pathways underlying this behavior.


1977 ◽  
Vol 40 (1) ◽  
pp. 74-94 ◽  
Author(s):  
C. W. Mohler ◽  
R. H. Wurtz

1. We studied the effect of lesions placed in striate cortex or superior colliculus on the detection of visual stimuli and the accuracy of saccadic eye movements. The monkeys (Macaca mulatta) first learned to respond to a 0.25 degrees spot of light flashed for 150-200 ms in one part of the visual field while they were fixating in order to determine if they could detect the light. The monkeys also learned in a different task to make a saccade to the spot of light when the fixation point went out, and the accuracy of the saccades was measured. 2. Following a unilateral partial ablation of the striate cortex in two monkeys they could not detect the spot of light in the resulting scotoma or saccade to it. The deficit was only relative; if we increased the brightness of the stimulus from the usual 11 cd/m2 to 1,700 cd/m2 against a background of 1 cd/m2 the monkeys were able to detect and to make a saccade to the spot of light. 3. Following about 1 mo of practice on the detection and saccade tasks, the monkeys recovered the ability to detect the spots of light and to make saccades to them without gross errors (saccades made beyond an area of +/-3 average standard deviations). Lowering the stimulus intensity reinstated both the detection and saccadic errors...


2012 ◽  
Vol 107 (9) ◽  
pp. 2442-2452 ◽  
Author(s):  
Husam A. Katnani ◽  
A. J. Van Opstal ◽  
Neeraj J. Gandhi

Population coding is a ubiquitous principle in the nervous system for the proper control of motor behavior. A significant amount of research is dedicated to studying population activity in the superior colliculus (SC) to investigate the motor control of saccadic eye movements. Vector summation with saturation (VSS) has been proposed as a mechanism for how population activity in the SC can be decoded to generate saccades. Interestingly, the model produces different predictions when decoding two simultaneous populations at high vs. low levels of activity. We tested these predictions by generating two simultaneous populations in the SC with high or low levels of dual microstimulation. We also combined varying levels of stimulation with visually induced activity. We found that our results did not perfectly conform to the predictions of the VSS scheme and conclude that the simplest implementation of the model is incomplete. We propose that additional parameters to the model might account for the results of this investigation.


1991 ◽  
Vol 6 (1) ◽  
pp. 3-13 ◽  
Author(s):  
James T. McIlwain

AbstractThis paper reviews evidence that the superior colliculus (SC) of the midbrain represents visual direction and certain aspects of saccadic eye movements in the distribution of activity across a population of cells. Accurate and precise eye movements appear to be mediated, in part at least, by cells of the SC that have large sensory receptive fields and/or discharge in association with a range of saccades. This implies that visual points or saccade targets are represented by patches rather than points of activity in the SC. Perturbation of the pattern of collicular discharge by focal inactivation modifies saccade amplitude and direction in a way consistent with distributed coding. Several models have been advanced to explain how such a code might be implemented in the colliculus. Evidence related to these hypotheses is examined and continuing uncertainties are identified.


2016 ◽  
Vol 116 (6) ◽  
pp. 2541-2549 ◽  
Author(s):  
John R. Economides ◽  
Daniel L. Adams ◽  
Jonathan C. Horton

The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Melcher ◽  
Devpriya Kumar ◽  
Narayanan Srinivasan

Abstract Visual perception is based on periods of stable fixation separated by saccadic eye movements. Although naive perception seems stable (in space) and continuous (in time), laboratory studies have demonstrated that events presented around the time of saccades are misperceived spatially and temporally. Saccadic chronostasis, the “stopped clock illusion”, represents one such temporal distortion in which the movement of the clock hand after the saccade is perceived as lasting longer than usual. Multiple explanations for chronostasis have been proposed including action-backdating, temporal binding of the action towards the moment of its effect (“intentional binding”) and post-saccadic temporal dilation. The current study aimed to resolve this debate by using different types of action (keypress vs saccade) and varying the intentionality of the action. We measured both perceived onset of the motor action and perceived onset of an auditory tone presented at different delays after the keypress/saccade. The results showed intentional binding for the keypress action, with perceived motor onset shifted forwards in time and the time of the tone shifted backwards. Saccades resulted in the opposite pattern, showing temporal expansion rather than compression, especially with cued saccades. The temporal illusion was modulated by intentionality of the movement. Our findings suggest that saccadic chronostasis is not solely dependent on a backward shift in perceived saccade onset, but instead reflects a temporal dilation. This percept of an effectively “longer” period at the beginning of a new fixation may reflect the pattern of suppressed, and then enhanced, visual processing around the time of saccades.


2019 ◽  
Vol 237 (11) ◽  
pp. 3033-3045
Author(s):  
Eugene McSorley ◽  
Iain D. Gilchrist ◽  
Rachel McCloy

Abstract One of the core mechanisms involved in the control of saccade responses to selected target stimuli is the disengagement from the current fixation location, so that the next saccade can be executed. To carry out everyday visual tasks, we make multiple eye movements that can be programmed in parallel. However, the role of disengagement in the parallel programming of saccades has not been examined. It is well established that the need for disengagement slows down saccadic response time. This may be important in allowing the system to program accurate eye movements and have a role to play in the control of multiple eye movements but as yet this remains untested. Here, we report two experiments that seek to examine whether fixation disengagement reduces saccade latencies when the task completion demands multiple saccade responses. A saccade contingent paradigm was employed and participants were asked to execute saccadic eye movements to a series of seven targets while manipulating when these targets were shown. This both promotes fixation disengagement and controls the extent that parallel programming can occur. We found that trial duration decreased as more targets were made available prior to fixation: this was a result both of a reduction in the number of saccades being executed and in their saccade latencies. This supports the view that even when fixation disengagement is not required, parallel programming of multiple sequential saccadic eye movements is still present. By comparison with previous published data, we demonstrate a substantial speeded of response times in these condition (“a gap effect”) and that parallel programming is attenuated in these conditions.


Sign in / Sign up

Export Citation Format

Share Document