saccade onset
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 18)

H-INDEX

27
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Nina M Hanning ◽  
Heiner Deubel

Already before the onset of a saccadic eye movement, we preferentially process visual information at the upcoming eye fixation. This 'presaccadic shift of attention' is typically assessed via localized test items, which potentially bias the attention measurement. Here we show how presaccadic attention shapes perception from saccade origin to target when no scene-structuring items are presented. Participants made saccades into a 1/f ('pink') noise field, in which we embedded a brief orientation signal at various locations shortly before saccade onset. Local orientation discrimination performance served as a proxy for the allocation of attention. Results demonstrate that (1) saccades are preceded by shifts of attention to their goal location even if they are directed into an unstructured visual field, but the spread of attention, compared to target-directed saccades, is broad; (2) the presaccadic attention shift is accompanied by considerable attentional costs at the presaccadic eye fixation; (3) objects markedly shape the distribution of presaccadic attention, demonstrating the relevance of an item-free approach for measuring attentional dynamics across the visual field.


2021 ◽  
Author(s):  
Lukas Schneider ◽  
Adan-Ulises Dominguez-Vargas ◽  
Lydia Gibson ◽  
Melanie Wilke ◽  
Igor Kagan

Causal perturbation studies suggest that the primate dorsal pulvinar (dPul) plays a crucial role in target selection and saccade planning, but many of its basic visuomotor neuronal properties are unclear. While some functional aspects of dPul and interconnected frontoparietal areas - such as ipsilesional choice bias after inactivation - are similar, it is not known if dPul neurons share oculomotor response properties of cortical circuitry. In particular, the delay period and choice-related activity have not been explored. Here we investigated visuomotor timing and tuning in macaque dPul during instructed and free choice memory saccades using electrophysiological recordings. Most units (80%) showed significant visual (16%), visuomotor (29%) or motor-related (35%) responses. Visual cue responses were mainly contralaterally-tuned; motor responses showed weak contralateral bias. Saccade-related responses (enhancement and suppression) were more common (64%) than cue-driven responses (45%). Pre-saccadic enhancement was less frequent (9-15% depending on the definition), and only few units exhibited classical visuomotor patterns such as a combination of cue and continuous delay period activity up to the saccade onset, or pre-saccadic ramping. Instead, activity was often suppressed during movement planning (30%) and execution phases (19%). Interestingly, most spatially-selective neurons did not encode the upcoming decision during the delay in free choice trials. Thus, in absence of a visible goal, the dorsal pulvinar has only a limited role in the prospective motor planning, with response patterns partially complementary to its frontoparietal cortical partners. Conversely, prevalent cue and post-saccadic responses imply that the dorsal pulvinar participates in integrating spatial goals with processing across saccades.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amir Akbarian ◽  
Kelsey Clark ◽  
Behrad Noudoost ◽  
Neda Nategh

AbstractSaccadic eye movements (saccades) disrupt the continuous flow of visual information, yet our perception of the visual world remains uninterrupted. Here we assess the representation of the visual scene across saccades from single-trial spike trains of extrastriate visual areas, using a combined electrophysiology and statistical modeling approach. Using a model-based decoder we generate a high temporal resolution readout of visual information, and identify the specific changes in neurons’ spatiotemporal sensitivity that underly an integrated perisaccadic representation of visual space. Our results show that by maintaining a memory of the visual scene, extrastriate neurons produce an uninterrupted representation of the visual world. Extrastriate neurons exhibit a late response enhancement close to the time of saccade onset, which preserves the latest pre-saccadic information until the post-saccadic flow of retinal information resumes. These results show how our brain exploits available information to maintain a representation of the scene while visual inputs are disrupted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcin Leszczynski ◽  
Leila Chaieb ◽  
Tobias Staudigl ◽  
Simon Jonas Enkirch ◽  
Juergen Fell ◽  
...  

AbstractIn natural vision humans and other primates explore environment by active sensing, using saccadic eye movements to relocate the fovea and sample different bits of information multiple times per second. Saccades induce a phase reset of ongoing neuronal oscillations in primary and higher-order visual cortices and in the medial temporal lobe. As a result, neuron ensembles are shifted to a common state at the time visual input propagates through the system (i.e., just after fixation). The extent of the brain’s circuitry that is modulated by saccades is not yet known. Here, we evaluate the possibility that saccadic phase reset impacts the anterior nuclei of the thalamus (ANT). Using recordings in the human thalamus of three surgical patients during natural vision, we found that saccades and visual stimulus onset both modulate neural activity, but with distinct field potential morphologies. Specifically, we found that fixation-locked field potentials had a component that preceded saccade onset. It was followed by an early negativity around 50 ms after fixation onset which is significantly faster than any response to visual stimulus presentation. The timing of these events suggests that the ANT is predictively modulated before the saccadic eye movement. We also found oscillatory phase concentration, peaking at 3–4 Hz, coincident with suppression of Broadband High-frequency Activity (BHA; 80–180 Hz), both locked to fixation onset supporting the idea that neural oscillations in these nuclei are reorganized to a low excitability state right after fixation onset. These findings show that during real-world natural visual exploration neural dynamics in the human ANT is influenced by visual and oculomotor events, which supports the idea that ANT, apart from their contribution to episodic memory, also play a role in natural vision.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rebekka Lencer ◽  
Inga Meyhöfer ◽  
Janina Triebsch ◽  
Karen Rolfes ◽  
Markus Lappe ◽  
...  

AbstractAbout 40% of schizophrenia patients report discrete visual disturbances which could occur if saccadic suppression, the decrease of visual sensitivity around saccade onset, is impaired. Two mechanisms contribute to saccadic suppression: efference copy processing and backwards masking. Both are reportedly altered in schizophrenia. However, saccadic suppression has not been investigated in schizophrenia. 17 schizophrenia patients and 18 healthy controls performed a saccadic suppression task using a Gabor stimulus with individually adjusted contrast, which was presented within an interval 300 ms around saccade onset. Visual disturbance scores were higher in patients than controls, but saccadic suppression strength and time course were similar in both groups with lower saccadic suppression rates being similarly related to smaller saccade amplitudes. Saccade amplitudes in the saccadic suppression task were reduced in patients, in contrast to unaltered amplitudes during a saccade control task. Notably, smaller saccade amplitudes were related to higher visual disturbances scores in patients. Saccadic suppression performance was unrelated to symptom expression and antipsychotic medication. Unaltered saccadic suppression in patients suggests sufficiently intact efference copy processing and backward masking as required for this task. Instead, visual disturbances in patients may be related to restricted saccadic amplitudes arising from cognitive load while completing a task.


Author(s):  
Janahan Selvanayagam ◽  
Kevin D Johnston ◽  
Raymond Ka Wong ◽  
David J Schaeffer ◽  
Stefan Everling

Faces are stimuli of critical importance for primates. The common marmoset (Callithrix jacchus) is a promising model for investigations of face processing, as this species possesses oculomotor and face processing networks resembling those of macaques and humans. Face processing is often disrupted in neuropsychiatric conditions such as schizophrenia (SZ) and thus it is important to recapitulate underlying circuitry dysfunction preclinically. The N-Methyl-D-aspartate (NMDA) non-competitive antagonist ketamine has been used extensively to model the cognitive symptoms of SZ. Here, we investigated the effects of a subanesthetic dose of ketamine on oculomotor behaviour in marmosets during face viewing. Four marmosets received systemic ketamine or saline injections while viewing phase-scrambled or intact videos of conspecifics' faces. To evaluate effects of ketamine on scan paths during face viewing, we identified regions of interest in each face video, and classified locations of saccade onsets and landing positions within these areas. A preference for the snout over eye regions was observed following ketamine administration. In addition, regions in which saccades landed could be significantly predicted by saccade onset region in the saline but not the ketamine condition. No significant drug effects were observed for phase-scrambled videos. Effects on saccade control were limited to a reduction in saccade amplitudes during viewing of scrambled videos. Thus, ketamine induced a significant disruption of scan paths during viewing of conspecific faces but limited effects on saccade motor control. These findings support the use of ketamine in marmosets for investigating changes in neural circuits underlying social cognition in neuropsychiatric disorders.


2021 ◽  
Author(s):  
Hiroya Ono ◽  
Masaki Sonoda ◽  
Brian H. Silverstein ◽  
Kaori Sonoda ◽  
Takafumi Kubota ◽  
...  

Objective: We clarified the clinical and mechanistic significance of physiological modulations of high-frequency broadband cortical activity associated with spontaneous saccadic eye movements during a resting state. Methods: We studied 30 patients who underwent epilepsy surgery following extraoperative electrocorticography and electrooculography recordings. We determined whether high-gamma activity at 70-110 Hz preceding saccade onset would predict upcoming ocular behaviors. We assessed how accurately the model incorporating saccade-related high-gamma modulations would localize the primary visual cortex defined by electrical stimulation. Results: The whole-brain level dynamic atlas demonstrated transient high-gamma suppression in the striatal region before saccade onset and high-gamma augmentation subsequently involving the widespread posterior brain regions. More intense striatal high-gamma suppression predicted the upcoming saccade directed to the ipsilateral side and lasting longer in duration. The bagged-tree-ensemble model demonstrated that intense saccade-related high-gamma modulations localized the visual cortex with an accuracy of 95%. Conclusions: We successfully animated the neural dynamics supporting saccadic suppression, a principal mechanism minimizing the perception of blurred vision during rapid eye movements. The primary visual cortex per se may prepare actively in advance for massive image motion expected during upcoming prolonged saccades. Significance: Measuring saccade-related electrocorticographic signals may help localize the visual cortex and avoid misperceiving physiological high-frequency activity as epileptogenic.


2021 ◽  
Author(s):  
Janahan Selvanayagam ◽  
Kevin D. Johnston ◽  
Raymond K. Wong ◽  
David J. Schaeffer ◽  
Stefan Everling

AbstractFaces are stimuli of critical importance for primates. The common marmoset (Callithrix jacchus) is a promising model for investigations of face processing, as this species possesses oculomotor and face processing networks resembling those of macaques and humans. Face processing is often disrupted in neuropsychiatric conditions such as schizophrenia (SZ) and thus it is important to recapitulate underlying circuitry dysfunction preclinically. The N-Methyl-D-aspartate (NMDA) non-competitive antagonist ketamine has been used extensively to model the cognitive symptoms of SZ. Here, we investigated the effects of a subanesthetic dose of ketamine on oculomotor behaviour in marmosets during face viewing. Four marmosets received systemic ketamine or saline injections while viewing phase-scrambled or intact videos of conspecifics’ faces. To evaluate effects of ketamine on scan paths during face viewing, we identified regions of interest in each face video, and classified locations of saccade onsets and landing positions within these areas. A preference for the snout over eye regions was observed following ketamine administration. In addition, regions in which saccades landed could be significantly predicted by saccade onset region in the saline but not the ketamine condition. No significant drug effects were observed for phase-scrambled videos. Effects on saccade control were limited to a reduction in saccade amplitudes during viewing of scrambled videos. Thus, ketamine induced a significant disruption of scan paths during viewing of conspecific faces but limited effects on saccade motor control. These findings support the use of ketamine in marmosets for investigating changes in neural circuits underlying social cognition in neuropsychiatric disorders.


2021 ◽  
Author(s):  
Atanas D Stankov ◽  
Jonathan Touryan ◽  
Stephen Gordon ◽  
Anthony J. Ries ◽  
Jason Ki ◽  
...  

AbstractRelatively little is known about visual processing during free-viewing visual search in realistic dynamic environments. Free-viewing is characterized by frequent saccades. During saccades, visual processing is thought to be inhibited, yet we know that the pre-saccadic visual content can modulate post-saccadic processing. To better understand these processes in a realistic setting, we study here saccades and neural responses elicited by the appearance of visual targets in a realistic virtual environment. While subjects were being driven through a 3D virtual town they were asked to discriminate between targets that appear on the road. We found that the presence of a target enhances early occipital as well as late frontocentral saccade-related responses. The earlier potential, shortly after 125ms post-saccade onset, was enhanced for targets that appeared in peripheral vision as compared to central vision, suggesting that fast peripheral processing initiated before saccade onset. The later potential, at 195ms post-saccade onset, was strongly modulated by the visibility of the target with a spatial distribution reminiscent of the classic P300 response. Together these results suggest that, during natural viewing, neural processing of the pre-saccadic visual stimulus continues throughout the saccade, apparently unencumbered by saccadic inhibition.


2021 ◽  
Vol 118 (6) ◽  
pp. e2006372118
Author(s):  
Naveen Sendhilnathan ◽  
Debaleena Basu ◽  
Michael E. Goldberg ◽  
Jeffrey D. Schall ◽  
Aditya Murthy

What are the cortical neural correlates that distinguish goal-directed and non–goal-directed movements? We investigated this question in the monkey frontal eye field (FEF), which is implicated in voluntary control of saccades. Here, we compared FEF activity associated with goal-directed (G) saccades and non–goal-directed (nG) saccades made by the monkey. Although the FEF neurons discharged before these nG saccades, there were three major differences in the neural activity: First, the variability in spike rate across trials decreased only for G saccades. Second, the local field potential beta-band power decreased during G saccades but did not change during nG saccades. Third, the time from saccade direction selection to the saccade onset was significantly longer for G saccades compared with nG saccades. Overall, our results reveal unexpected differences in neural signatures for G versus nG saccades in a brain area that has been implicated selectively in voluntary control. Taken together, these data add critical constraints to the way we think about saccade generation in the brain.


Sign in / Sign up

Export Citation Format

Share Document