scholarly journals Normal correspondence of tectal maps for saccadic eye movements in strabismus

2016 ◽  
Vol 116 (6) ◽  
pp. 2541-2549 ◽  
Author(s):  
John R. Economides ◽  
Daniel L. Adams ◽  
Jonathan C. Horton

The superior colliculus is a major brain stem structure for the production of saccadic eye movements. Electrical stimulation at any given point in the motor map generates saccades of defined amplitude and direction. It is unknown how this saccade map is affected by strabismus. Three macaques were raised with exotropia, an outwards ocular deviation, by detaching the medial rectus tendon in each eye at age 1 mo. The animals were able to make saccades to targets with either eye and appeared to alternate fixation freely. To probe the organization of the superior colliculus, microstimulation was applied at multiple sites, with the animals either free-viewing or fixating a target. On average, microstimulation drove nearly conjugate saccades, similar in both amplitude and direction but separated by the ocular deviation. Two monkeys showed a pattern deviation, characterized by a systematic change in the relative position of the two eyes with certain changes in gaze angle. These animals' saccades were slightly different for the right eye and left eye in their amplitude or direction. The differences were consistent with the animals' underlying pattern deviation, measured during static fixation and smooth pursuit. The tectal map for saccade generation appears to be normal in strabismus, but saccades may be affected by changes in the strabismic deviation that occur with different gaze angles.

1994 ◽  
Vol 72 (6) ◽  
pp. 2648-2664 ◽  
Author(s):  
R. J. Cowie ◽  
D. L. Robinson

1. These studies were initiated to understand the neural sites and mechanisms controlling head movements during gaze shifts. Gaze shifts are made by saccadic eye movements with and without head movements. Sites were stimulated electrically within the brain stem of awake, trained monkeys relatively free to make head movements to study the head-movement components of gaze shifts. 2. Electrical stimulation in and around the gigantocellular reticular nucleus evoked head movements in the ipsilateral direction. Gaze shifts were never evoked from these sites, presumably because the vestibulo-ocular reflex compensated. The rough topography of this region included large head movements laterally, small movements medially, downward movements from dorsal sites, and upward movements more ventrally. 3. The initial position of the head influenced the magnitude of the elicited movement with larger movements produced when the head was directed to the contralateral side. Attentive fixation was associated with larger and faster head movements when compared with those evoked during spontaneous behavior. 4. The superior colliculus makes a significant contribution to gaze shifts and has been shown to contribute to head movements. Because the colliculus is a major source of afferents to the gigantocellular reticular nucleus, comparable stimulation studies of the superior colliculus were conducted. When the colliculus was excited, shifts of gaze in the contralateral direction were predominant. These were most often accomplished by saccadic eye movements, however, we frequently elicited head movements that had an average latency 10 ms longer than those elicited from the reticular head movement region. Sites evoking head movements tended to be deeper and more caudal than loci eliciting eye movements. Neither the onset latencies, amplitudes, nor peak velocities of head movements and eye movements were correlated. Gaze shifts evoked from the caudal colliculus with the head free were larger than those elicited from the same site with the head fixed. 5. These studies demonstrate that both the superior colliculus and gigantocellular reticular nucleus mediate head movements. The colliculus plays a role in orienting to external events, and so collicular head movements predominantly were associated with gaze shifts, with the eye and head movements uncoupled. The medullary reticular system may play a role in the integration of a wider range of movements. Head movements from the medullary reticular sites probably participate in several forms of head movements, such as those that are related to postural reflexes, started volitionally, and/or oriented to external events.


1998 ◽  
Vol 79 (3) ◽  
pp. 1193-1209 ◽  
Author(s):  
Douglas P. Munoz ◽  
Peter J. Istvan

Munoz, Douglas P. and Peter J. Istvan. Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J. Neurophysiol. 79: 1193–1209, 1998. The intermediate layers of the monkey superior colliculus (SC) contain neurons the discharges of which are modulated by visual fixation and saccadic eye movements. Fixation neurons, located in the rostral pole of the SC, discharge action potentials tonically during visual fixation and pause for most saccades. Saccade neurons, located throughout the remainder of the intermediate layers of the SC, discharge action potentials for saccades to a restricted region of the visual field. We defined the fixation zone as that region of the rostral SC containing fixation neurons and the saccade zone as the remainder of the SC. It recently has been hypothesized that a network of local inhibitory interneurons may help shape the reciprocal discharge pattern of fixation and saccade neurons. To test this hypothesis, we combined extracellular recording and microstimulation techniques in awake monkeys trained to perform oculomotor paradigms that enabled us to classify collicular fixation and saccade neurons. Microstimulation was used to electrically activate the fixation and saccade zones of the ipsilateral and contralateral SC to test for inhibitory and excitatory inputs onto fixation and saccade neurons. Saccade neurons were inhibited at short latencies following electrical stimulation of either the ipsilateral (1–5 ms) or contralateral (2–7 ms) fixation or saccade zones. Fixation neurons were inhibited 1–4 ms after electrical stimulation of the ipsilateral saccade zone. Stimulation of the contralateral saccade zone led to much weaker inhibition of fixation neurons. Stimulation of the contralateral fixation zone led to short-latency (1–2 ms) excitation of fixation neurons. Only a small percentage of saccade and fixation neurons were activated by the electrical stimulation (latency: 0.5–2.0 ms). These responses were confirmed as either orthodromic or antidromic responses using collision testing. The results suggest that a local network of inhibitory interneurons may help shape not only the reciprocal discharge pattern of fixation and saccade neurons but also permit lateral interactions between all regions of the ipsilateral and contralateral SC. These interactions therefore may be critical for maintaining stable visual fixation, suppressing unwanted saccades, and initiating saccadic eye movements to targets of interest.


1993 ◽  
Vol 70 (2) ◽  
pp. 576-589 ◽  
Author(s):  
D. P. Munoz ◽  
R. H. Wurtz

1. We tested the hypothesis that a subset of neurons, which we have referred to as fixation cells, located within the rostral pole of the monkey superior colliculus (SC) controls the generation of saccadic eye movements. We altered the activity of these neurons with either electrical stimulation or GABAergic drugs. 2. An increase in the activity of fixation cells in the rostral SC, induced by a train of low-frequency electrical stimulation, delayed the initiation of saccades. With bilateral stimulation the monkey was able to make saccades only after stimulation ceased. 3. Pulses of stimulation delivered during the saccade produced an interruption of the saccade in midflight. The latency to the onset of this perturbation was as short as 12 ms. 4. Injection of the gamma-aminobutyric acid (GABA) antagonist bicuculline into the rostral pole of the SC, which decreases normal GABA inhibition and increases cell activity, increased the latency of saccades to both visual and remembered targets. 5. Injection of the GABA agonist muscimol into the rostral SC, which increases normal GABA inhibition and decreases activity, reduced the latency for saccades to visual targets. The monkey also had difficulty maintaining visual fixation and suppressing unwanted saccades. 6. After muscimol injections, monkeys frequently made very short-latency saccades forming a peak in the saccade latency histogram at < 100 ms. These saccades are similar to express saccades made by normal monkeys. This finding suggests that the fixation cells in the rostral SC are critical for controlling the frequency of express saccades. 7. These results support the hypothesis that fixation cells in the rostral SC inhibit the generation of saccadic eye movements and that they form part of a system of oculomotor control, that of visual fixation.


2017 ◽  
Vol 117 (3) ◽  
pp. 1281-1292 ◽  
Author(s):  
Suraj Upadhyaya ◽  
Hui Meng ◽  
Vallabh E. Das

Disruption of binocular vision during the critical period for development leads to eye misalignment in humans and in monkey models. We have previously suggested that disruption within a vergence circuit could be the neural basis for strabismus. Electrical stimulation in the rostral superior colliculus (rSC) leads to vergence eye movements in normal monkeys. Therefore, the purpose of this study was to investigate the effect of SC stimulation on eye misalignment in strabismic monkeys. Electrical stimulation was delivered to 51 sites in the intermediate and deep layers of the SC (400 Hz, 0.5-s duration, 10–40 μA) in 3 adult optical prism-reared strabismic monkeys. Scleral search coils were used to measure movements of both eyes during a fixation task. Staircase saccades with horizontal and vertical components were elicited by stimulation as predicted from the SC topographic map. Electrical stimulation also resulted in significant changes in horizontal strabismus angle, i.e., a shift toward exotropia/esotropia depending on stimulation site. Electrically evoked saccade vector amplitude in the two eyes was not significantly different ( P > 0.05; paired t-test) but saccade direction differed. However, saccade disconjugacy accounted for only ~50% of the change in horizontal misalignment while disconjugate postsaccadic movements accounted for the other ~50% of the change in misalignment due to electrical stimulation. In summary, our data suggest that electrical stimulation of the SC of strabismic monkeys produces a change in horizontal eye alignment that is due to a combination of disconjugate saccadic eye movements and disconjugate postsaccadic movements. NEW & NOTEWORTHY Electrical stimulation of the superior colliculus in strabismic monkeys results in a change in eye misalignment. These data support the notion of developmental disruption of vergence circuits leading to maintenance of eye misalignment in strabismus.


2012 ◽  
Vol 107 (9) ◽  
pp. 2442-2452 ◽  
Author(s):  
Husam A. Katnani ◽  
A. J. Van Opstal ◽  
Neeraj J. Gandhi

Population coding is a ubiquitous principle in the nervous system for the proper control of motor behavior. A significant amount of research is dedicated to studying population activity in the superior colliculus (SC) to investigate the motor control of saccadic eye movements. Vector summation with saturation (VSS) has been proposed as a mechanism for how population activity in the SC can be decoded to generate saccades. Interestingly, the model produces different predictions when decoding two simultaneous populations at high vs. low levels of activity. We tested these predictions by generating two simultaneous populations in the SC with high or low levels of dual microstimulation. We also combined varying levels of stimulation with visually induced activity. We found that our results did not perfectly conform to the predictions of the VSS scheme and conclude that the simplest implementation of the model is incomplete. We propose that additional parameters to the model might account for the results of this investigation.


1991 ◽  
Vol 6 (1) ◽  
pp. 3-13 ◽  
Author(s):  
James T. McIlwain

AbstractThis paper reviews evidence that the superior colliculus (SC) of the midbrain represents visual direction and certain aspects of saccadic eye movements in the distribution of activity across a population of cells. Accurate and precise eye movements appear to be mediated, in part at least, by cells of the SC that have large sensory receptive fields and/or discharge in association with a range of saccades. This implies that visual points or saccade targets are represented by patches rather than points of activity in the SC. Perturbation of the pattern of collicular discharge by focal inactivation modifies saccade amplitude and direction in a way consistent with distributed coding. Several models have been advanced to explain how such a code might be implemented in the colliculus. Evidence related to these hypotheses is examined and continuing uncertainties are identified.


1993 ◽  
Vol 46 (1) ◽  
pp. 51-82 ◽  
Author(s):  
Harold Pashler ◽  
Mark Carrier ◽  
James Hoffman

Four dual-task experiments required a speeded manual choice response to a tone in a close temporal proximity to a saccadic eye movement task. In Experiment 1, subjects made a saccade towards a single transient; in Experiment 2, a red and a green colour patch were presented to left and right, and the saccade was to which ever patch was the pre-specified target colour. There was some slowing of the eye movement, but neither task combination showed typical dual-task interference (the “psychological refractory effect”). However, more interference was observed when the direction of the saccade depended on whether a central colour patch was red or green, or when the saccade was directed towards the numerically higher of two large digits presented to the left and the right. Experiment 5 examined a vocal second task, for comparison. The findings might reflect the fact that eye movements can be directed by two separate brain systems–-the superior colliculus and the frontal eye fields; commands from the latter but not the former may be delayed by simultaneous unrelated sensorimotor tasks.


Perception ◽  
1994 ◽  
Vol 23 (1) ◽  
pp. 45-64 ◽  
Author(s):  
Monica Biscaldi ◽  
Burkhart Fischer ◽  
Franz Aiple

Twenty-four children made saccades in five noncognitive tasks. Two standard tasks required saccades to a single target presented randomly 4 deg to the right or left of a fixation point. Three other tasks required sequential saccades from the left to the right. 75 parameters of the eye-movement data were collected for each child. On the basis of their reading, writing, and other cognitive performances, twelve children were considered dyslexic and were divided into two groups (D1 and D2). Group statistical comparisons revealed significant differences between control and dyslexic subjects. In general, in the standard tasks the dyslexic subjects had poorer fixation quality, failed more often to hit the target at once, had smaller primary saccades, and had shorter reaction times to the left as compared with the control group. The control group and group D1 dyslexics showed an asymmetrical distribution of reaction times, but in opposite directions. Group D2 dyslexics made more anticipatory and express saccades, they undershot the target more often in comparison with the control group, and almost never overshot it. In the sequential tasks group D1 subjects made fewer and larger saccades in a shorter time and group D2 subjects had shorter fixation durations than the subjects of the control group.


1998 ◽  
Vol 80 (6) ◽  
pp. 3373-3379 ◽  
Author(s):  
A. K. Moschovakis ◽  
Y. Dalezios ◽  
J. Petit ◽  
A. A. Grantyn

Moschovakis, A. K., Y. Dalezios, J. Petit, and A. A. Grantyn. New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J. Neurophysiol. 80: 3373–3379, 1998. Electrical stimulation of the feline superior colliculus (SC) is known to evoke saccades whose size depends on the site stimulated (the “characteristic vector” of evoked saccades) and the initial position of the eyes. Similar stimuli were recently shown to produce slow drifts that are presumably caused by relatively direct projections of the SC onto extraocular motoneurons. Both slow and fast evoked eye movements are similarly affected by the initial position of the eyes, despite their dissimilar metrics, kinematics, and anatomic substrates. We tested the hypothesis that the position sensitivity of evoked saccades is due to the superposition of largely position-invariant saccades and position-dependent slow drifts. We show that such a mechanism can account for the fact that the position sensitivity of evoked saccades increases together with the size of their characteristic vector. Consistent with it, the position sensitivity of saccades drops considerably when the contribution of slow drifts is minimal as, for example, when there is no overlap between evoked saccades and short-duration trains of high-frequency stimuli.


Sign in / Sign up

Export Citation Format

Share Document