Working Memory Networks for Learning Temporal Order with Application to Three-Dimensional Visual Object Recognition

1992 ◽  
Vol 4 (2) ◽  
pp. 270-286 ◽  
Author(s):  
Gary Bradski ◽  
Gail A. Carpenter ◽  
Stephen Grossberg

Working memory neural networks, called Sustained Temporal Order REcurrent (STORE) models, encode the invariant temporal order of sequential events in short-term memory (STM). Inputs to the networks may be presented with widely differing growth rates, amplitudes, durations, and interstimulus intervals without altering the stored STM representation. The STORE temporal order code is designed to enable groupings of the stored events to be stably learned and remembered in real time, even as new events perturb the system. Such invariance and stability properties are needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensorimotor planning, or three-dimensional (3-D) visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its two-dimensional (2-D) aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor → ART 2 → STORE Model → ART 2 → Outstar Network.

1997 ◽  
Vol 9 (4) ◽  
pp. 777-804 ◽  
Author(s):  
Bartlett W. Mel

Severe architectural and timing constraints within the primate visual system support the conjecture that the early phase of object recognition in the brain is based on a feedforward feature-extraction hierarchy. To assess the plausibility of this conjecture in an engineering context, a difficult three-dimensional object recognition domain was developed to challenge a pure feedforward, receptive-field based recognition model called SEEMORE. SEEMORE is based on 102 viewpoint-invariant nonlinear filters that as a group are sensitive to contour, texture, and color cues. The visual domain consists of 100 real objects of many different types, including rigid (shovel), nonrigid (telephone cord), and statistical (maple leaf cluster) objects and photographs of complex scenes. Objects were in dividually presented in color video images under normal room lighting conditions. Based on 12 to 36 training views, SEEMORE was required to recognize unnormalized test views of objects that could vary in position, orientation in the image plane and in depth, and scale (factor of 2); for non rigid objects, recognition was also tested under gross shape deformations. Correct classification performance on a test set consisting of 600 novel object views was 97 percent (chance was 1 percent) and was comparable for the subset of 15 nonrigid objects. Performance was also measured under a variety of image degradation conditions, including partial occlusion, limited clutter, color shift, and additive noise. Generalization behavior and classification errors illustrate the emergence of several striking natural shape categories that are not explicitly encoded in the dimensions of the feature space. It is concluded that in the light of the vast hardware resources available in the ventral stream of the primate visual system relative to those exercised here, the appealingly simple feature-space conjecture remains worthy of serious consideration as a neurobiological model.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


2007 ◽  
Author(s):  
K. Suzanne Scherf ◽  
Marlene Behrmann ◽  
Kate Humphreys ◽  
Beatriz Luna

1997 ◽  
Author(s):  
Randall W. Engle ◽  
Stephen Tuholski ◽  
James Laughlin ◽  
Andrew Conway

Author(s):  
Steven J Hardy ◽  
Sarah E Bills ◽  
Emily R Meier ◽  
Jeffrey C Schatz ◽  
Katie J Keridan ◽  
...  

Abstract Objective Youth with sickle cell disease (SCD) are at risk for neurocognitive deficits including problems with working memory (WM), but few interventions to improve functioning exist. This study sought to determine the feasibility and efficacy of home-based, digital WM training on short-term memory and WM, behavioral outcomes, and academic fluency using a parallel group randomized controlled trial design. Methods 47 children (7–16 years) with SCD and short-term memory or WM difficulties were randomized to Cogmed Working Memory Training at home on a tablet device (N = 24) or to a standard care Waitlist group (N = 23) that used Cogmed after the waiting period. Primary outcomes assessed in clinic included performance on verbal and nonverbal short-term memory and WM tasks. Secondary outcomes included parent-rated executive functioning and tests of math and reading fluency. Results In the evaluable sample, the Cogmed group (N = 21) showed greater improvement in visual WM compared with the Waitlist group (N = 22; p = .03, d = 0.70 [CI95 = 0.08, 1.31]). When examining a combined sample of participants, those who completed ≥10 training sessions exhibited significant improvements in verbal short-term memory, visual WM, and math fluency. Adherence to Cogmed was lower than expected (M = 9.07 sessions, SD = 7.77), with 19 participants (41%) completing at least 10 sessions. Conclusions: Visual WM, an ability commonly affected by SCD, is modifiable with cognitive training. Benefits extended to verbal short-term memory and math fluency when patients completed a sufficient training dose. Additional research is needed to identify ideal candidates for training and determine whether training gains are sustainable and generalize to real-world outcomes.


Sign in / Sign up

Export Citation Format

Share Document