Computation of the Phase Response Curve: A Direct Numerical Approach

2006 ◽  
Vol 18 (4) ◽  
pp. 817-847 ◽  
Author(s):  
W. Govaerts ◽  
B. Sautois

Neurons are often modeled by dynamical systems—parameterized systems of differential equations. A typical behavioral pattern of neurons is periodic spiking; this corresponds to the presence of stable limit cycles in the dynamical systems model. The phase resetting and phase response curves (PRCs) describe the reaction of the spiking neuron to an input pulse at each point of the cycle. We develop a new method for computing these curves as a by-product of the solution of the boundary value problem for the stable limit cycle. The method is mathematically equivalent to the adjoint method, but our implementation is computationally much faster and more robust than any existing method. In fact, it can compute PRCs even where the limit cycle can hardly be found by time integration, for example, because it is close to another stable limit cycle. In addition, we obtain the discretized phase response curve in a form that is ideally suited for most applications. We present several examples and provide the implementation in a freely available Matlab code.

2018 ◽  
Vol 29 (5) ◽  
pp. 905-940 ◽  
Author(s):  
Y. PARK ◽  
K. M. SHAW ◽  
H. J. CHIEL ◽  
P. J. THOMAS

The asymptotic phase θ of an initial point x in the stable manifold of a limit cycle (LC) identifies the phase of the point on the LC to which the flow φt(x) converges as t → ∞. The infinitesimal phase response curve (iPRC) quantifies the change in timing due to a small perturbation of a LC trajectory. For a stable LC in a smooth dynamical system, the iPRC is the gradient ∇x(θ) of the phase function, which can be obtained via the adjoint of the variational equation. For systems with discontinuous dynamics, the standard approach to obtaining the iPRC fails. We derive a formula for the iPRCs of LCs occurring in piecewise smooth (Filippov) dynamical systems of arbitrary dimension, subject to a transverse flow condition. Discontinuous jumps in the iPRC can occur at the boundaries separating subdomains, and are captured by a linear matching condition. The matching matrix, M, can be derived from the saltation matrix arising in the associated variational problem. For the special case of linear dynamics away from switching boundaries, we obtain an explicit expression for the iPRC. We present examples from cell biology (Glass networks) and neuroscience (central pattern generator models). We apply the iPRCs obtained to study synchronization and phase-locking in piecewise smooth LC systems in which synchronization arises solely due to the crossing of switching manifolds.


2009 ◽  
Vol 4 (1) ◽  
pp. 57-66
Author(s):  
Hossein Gholizade-Narm ◽  
Asad Azemi ◽  
Morteza Khademi ◽  
Masoud Karimi-Ghartemani

Author(s):  
Abdulghafoor Jasim Salim ◽  
Kais Ismail Ebrahem ◽  
Suhirman

Abstract: In this paper we study the stability of one of a non linear autoregressive model with trigonometric term  by using local linearization method proposed by Tuhro Ozaki .We find the singular point ,the stability of the singular point and the limit cycle. We conclude  that the proposed model under certain conditions have a non-zero singular point which is  a asymptotically salable ( when  0 ) and have an  orbitaly stable limit cycle . Also we give some examples in order to explain the method. Key Words : Non-linear Autoregressive model; Limit cycle; singular point; Stability.


2016 ◽  
Vol 26 (02) ◽  
pp. 1650034 ◽  
Author(s):  
Jicai Huang ◽  
Xiaojing Xia ◽  
Xinan Zhang ◽  
Shigui Ruan

It was shown in [Li & Xiao, 2007] that in a predator–prey model of Leslie type with simplified Holling type IV functional response some complex bifurcations can occur simultaneously for some values of parameters, such as codimension 1 subcritical Hopf bifurcation and codimension 2 Bogdanov–Takens bifurcation. In this paper, we show that for the same model there exists a unique degenerate positive equilibrium which is a degenerate Bogdanov–Takens singularity (focus case) of codimension 3 for other values of parameters. We prove that the model exhibits degenerate focus type Bogdanov–Takens bifurcation of codimension 3 around the unique degenerate positive equilibrium. Numerical simulations, including the coexistence of three hyperbolic positive equilibria, two limit cycles, bistability states (one stable equilibrium and one stable limit cycle, or two stable equilibria), tristability states (two stable equilibria and one stable limit cycle), a stable limit cycle enclosing a homoclinic loop, a homoclinic loop enclosing an unstable limit cycle, or a stable limit cycle enclosing three unstable hyperbolic positive equilibria for various parameter values, confirm the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document