Mean-Driven and Fluctuation-Driven Persistent Activity in Recurrent Networks

2007 ◽  
Vol 19 (1) ◽  
pp. 1-46 ◽  
Author(s):  
Alfonso Renart ◽  
Rubén Moreno-Bote ◽  
Xiao-Jing Wang ◽  
Néstor Parga

Spike trains from cortical neurons show a high degree of irregularity, with coefficients of variation (CV) of their interspike interval (ISI) distribution close to or higher than one. It has been suggested that this irregularity might be a reflection of a particular dynamical state of the local cortical circuit in which excitation and inhibition balance each other. In this “balanced” state, the mean current to the neurons is below threshold, and firing is driven by current fluctuations, resulting in irregular Poisson-like spike trains. Recent data show that the degree of irregularity in neuronal spike trains recorded during the delay period of working memory experiments is the same for both low-activity states of a few Hz and for elevated, persistent activity states of a few tens of Hz. Since the difference between these persistent activity states cannot be due to external factors coming from sensory inputs, this suggests that the underlying network dynamics might support coexisting balanced states at different firing rates. We use mean field techniques to study the possible existence of multiple balanced steady states in recurrent networks of current-based leaky integrate-and-fire (LIF) neurons. To assess the degree of balance of a steady state, we extend existing mean-field theories so that not only the firing rate, but also the coefficient of variation of the interspike interval distribution of the neurons, are determined self-consistently. Depending on the connectivity parameters of the network, we find bistable solutions of different types. If the local recurrent connectivity is mainly excitatory, the two stable steady states differ mainly in the mean current to the neurons. In this case, the mean drive in the elevated persistent activity state is suprathreshold and typically characterized by low spiking irregularity. If the local recurrent excitatory and inhibitory drives are both large and nearly balanced, or even dominated by inhibition, two stable states coexist, both with subthreshold current drive. In this case, the spiking variability in both the resting state and the mnemonic persistent state is large, but the balance condition implies parameter fine-tuning. Since the degree of required fine-tuning increases with network size and, on the other hand, the size of the fluctuations in the afferent current to the cells increases for small networks, overall we find that fluctuation-driven persistent activity in the very simplified type of models we analyze is not a robust phenomenon. Possible implications of considering more realistic models are discussed.

Author(s):  
Klaus Morawetz

The classical non-ideal gas shows that the two original concepts of the pressure based of the motion and the forces have eventually developed into drift and dissipation contributions. Collisions of realistic particles are nonlocal and non-instant. A collision delay characterizes the effective duration of collisions, and three displacements, describe its effective non-locality. Consequently, the scattering integral of kinetic equation is nonlocal and non-instant. The non-instant and nonlocal corrections to the scattering integral directly result in the virial corrections to the equation of state. The interaction of particles via long-range potential tails is approximated by a mean field which acts as an external field. The effect of the mean field on free particles is covered by the momentum drift. The effect of the mean field on the colliding pairs causes the momentum and the energy gains which enter the scattering integral and lead to an internal mechanism of energy conversion. The entropy production is shown and the nonequilibrium hydrodynamic equations are derived. Two concepts of quasiparticle, the spectral and the variational one, are explored with the help of the virial of forces.


1988 ◽  
Vol 60 (1) ◽  
pp. 1-29 ◽  
Author(s):  
E. D. Young ◽  
J. M. Robert ◽  
W. P. Shofner

1. The responses of neurons in the ventral cochlear nucleus (VCN) of decerebrate cats are described with regard to their regularity of discharge and latency. Regularity is measured by estimating the mean and standard deviation of interspike intervals as a function of time during responses to short tone bursts (25 ms). This method extends the usual interspike-interval analysis based on interval histograms by allowing the study of temporal changes in regularity during transient responses. The coefficient of variation (CV), equal to the ratio of standard deviation to mean interspike interval, is used as a measure of irregularity. Latency is measured as the mean and standard deviation of the latency of the first spike in response to short tone bursts, with 1.6-ms rise times. 2. The regularity and latency properties of the usual PST histogram response types are shown. Five major PST response type classes are used: chopper, primary-like, onset, onset-C, and unusual. The presence of a prepotential in a unit's action potentials is also noted; a prepotential implies that the unit is recorded from a bushy cell. 3. Units with chopper PST histograms give the most regular discharge. Three varieties of choppers are found. Chop-S units (regular choppers) have CVs less than 0.35 that are approximately constant during the response; chop-S units show no adaptation of instantaneous rate, as measured by the inverse of the mean interspike interval. Chop-T units have CVs greater than 0.35, show an increase in irregularity during the response and show substantial rate adaptation. Chop-U units have CVs greater than 0.35, show a decrease in irregularity during the response, and show a variety of rate adaptation behaviors, including negative adaptation (an increase in rate during a short-tone response). Irregular choppers (chop-T and chop-U units) rarely have CVs greater than 0.5. Choppers have the longest latencies of VCN units; all three groups have mean latencies at least 1 ms longer than the shortest auditory nerve (AN) fiber mean latencies. 4. Chopper units are recorded from stellate cells in VCN (35, 42). Our results for chopper units suggest a model for stellate cells in which a regularly firing action potential generator is driven by the summation of the AN inputs to the cell, where the summation is low-pass filtered by the membrane capacitance of the cell.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

2019 ◽  
Vol 46 (3) ◽  
pp. 54-55
Author(s):  
Thirupathaiah Vasantam ◽  
Arpan Mukhopadhyay ◽  
Ravi R. Mazumdar

2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Hui Huang ◽  
Jinniao Qiu

AbstractIn this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions $$d=2,3$$ d = 2 , 3 . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.


Sign in / Sign up

Export Citation Format

Share Document