scholarly journals Spike Train Probability Models for Stimulus-Driven Leaky Integrate-and-Fire Neurons

2008 ◽  
Vol 20 (7) ◽  
pp. 1776-1795 ◽  
Author(s):  
Shinsuke Koyama ◽  
Robert E. Kass

Mathematical models of neurons are widely used to improve understanding of neuronal spiking behavior. These models can produce artificial spike trains that resemble actual spike train data in important ways, but they are not very easy to apply to the analysis of spike train data. Instead, statistical methods based on point process models of spike trains provide a wide range of data-analytical techniques. Two simplified point process models have been introduced in the literature: the time-rescaled renewal process (TRRP) and the multiplicative inhomogeneous Markov interval (m-IMI) model. In this letter we investigate the extent to which the TRRP and m-IMI models are able to fit spike trains produced by stimulus-driven leaky integrate-and-fire (LIF) neurons. With a constant stimulus, the LIF spike train is a renewal process, and the m-IMI and TRRP models will describe accurately the LIF spike train variability. With a time-varying stimulus, the probability of spiking under all three of these models depends on both the experimental clock time relative to the stimulus and the time since the previous spike, but it does so differently for the LIF, m-IMI, and TRRP models. We assessed the distance between the LIF model and each of the two empirical models in the presence of a time-varying stimulus. We found that while lack of fit of a Poisson model to LIF spike train data can be evident even in small samples, the m-IMI and TRRP models tend to fit well, and much larger samples are required before there is statistical evidence of lack of fit of the m-IMI or TRRP models. We also found that when the mean of the stimulus varies across time, the m-IMI model provides a better fit to the LIF data than the TRRP, and when the variance of the stimulus varies across time, the TRRP provides the better fit.

2009 ◽  
Vol 29 (1-2) ◽  
pp. 203-212 ◽  
Author(s):  
Surya Tokdar ◽  
Peiyi Xi ◽  
Ryan C. Kelly ◽  
Robert E. Kass

2002 ◽  
Vol 14 (2) ◽  
pp. 325-346 ◽  
Author(s):  
Emery N. Brown ◽  
Riccardo Barbieri ◽  
Valérie Ventura ◽  
Robert E. Kass ◽  
Loren M. Frank

Measuring agreement between a statistical model and a spike train data series, that is, evaluating goodness of fit, is crucial for establishing the model's validity prior to using it to make inferences about a particular neural system. Assessing goodness-of-fit is a challenging problem for point process neural spike train models, especially for histogram-based models such as perstimulus time histograms (PSTH) and rate functions estimated by spike train smoothing. The time-rescaling theorem is a well-known result in probability theory, which states that any point process with an integrable conditional intensity function may be transformed into a Poisson process with unit rate. We describe how the theorem may be used to develop goodness-of-fit tests for both parametric and histogram-based point process models of neural spike trains. We apply these tests in two examples: a comparison of PSTH, inhomogeneous Poisson, and inhomogeneous Markov interval models of neural spike trains from the supplementary eye field of a macque monkey and a comparison of temporal and spatial smoothers, inhomogeneous Poisson, inhomogeneous gamma, and inhomogeneous inverse gaussian models of rat hippocampal place cell spiking activity. To help make the logic behind the time-rescaling theorem more accessible to researchers in neuroscience, we present a proof using only elementary probability theory arguments.We also show how the theorem may be used to simulate a general point process model of a spike train. Our paradigm makes it possible to compare parametric and histogram-based neural spike train models directly. These results suggest that the time-rescaling theorem can be a valuable tool for neural spike train data analysis.


2019 ◽  
Vol 609 ◽  
pp. 239-256 ◽  
Author(s):  
TL Silva ◽  
G Fay ◽  
TA Mooney ◽  
J Robbins ◽  
MT Weinrich ◽  
...  

2013 ◽  
Author(s):  
Ahmed Gamal-Eldin ◽  
Guillaume Charpiat ◽  
Xavier Descombes ◽  
Josiane Zerubia

Sign in / Sign up

Export Citation Format

Share Document