Self-Consistent Learning of the Environment

2012 ◽  
Vol 24 (12) ◽  
pp. 3191-3212
Author(s):  
Kukjin Kang ◽  
Shun-ichi Amari

We study the Bayesian process to estimate the features of the environment. We focus on two aspects of the Bayesian process: how estimation error depends on the prior distribution of features and how the prior distribution can be learned from experience. The accuracy of the perception is underestimated when each feature of the environment is considered independently because many different features of the environment are usually highly correlated and the estimation error greatly depends on the correlations. The self-consistent learning process renews the prior distribution of correlated features jointly with the estimation of the environment. Here, maximum a posteriori probability (MAP) estimation decreases the effective dimensions of the feature vector. There are critical noise levels in self-consistent learning with MAP estimation, that cause hysteresis behaviors in learning. The self-consistent learning process with stochastic Bayesian estimation (SBE) makes the presumed distribution of environmental features converge to the true distribution for any level of channel noise. However, SBE is less accurate than MAP estimation. We also discuss another stochastic method of estimation, SBE2, which has a smaller estimation error than SBE without hysteresis.

Author(s):  
Hubert J. M Hermans

For the development of a democratic self, dialogical relationships between different people and between different positions in the self are paramount. After a review of studies on self-talk, the main part of this chapter is devoted to a comparison of the works of two classic thinkers on dialogue, Mikhail Bakhtin and David Bohm. A third theoretical perspective is depicted in which central elements of the two theorists are combined. This perspective centers around the concept of “generative dialogue” that, as a learning process, has the potential of innovation in the form of new and common meanings without total unification of the different positions. Elaborating on central features of generative dialogue, a distinction is made between consonant and dissonant dialogue, the latter of which is inevitable in a time of globalization and localization in which people are increasingly interdependent and, at the same time, faced with their apparent differences.


1—The method of the self-consistent field for determining the wave functions and energy levels of an atom with many electrons was developed by Hartree, and later derived from a variation principle and modified to take account of exchange and of Pauli’s exclusion principle by Slater* and Fock. No attempt was made to consider relativity effects, and the use of “ spin ” wave functions was purely formal. Since, in the solution of Dirac’s equation for a hydrogen-like atom of nuclear charge Z, the difference of the radial wave functions from the solutions of Schrodinger’s equation depends on the ratio Z/137, it appears that for heavy atoms the relativity correction will be of importance; in fact, it may in some cases be of more importance as a modification of Hartree’s original self-nsistent field equation than “ exchange ” effects. The relativistic self-consistent field equation neglecting “ exchange ” terms can be formed from Dirac’s equation by a method completely analogous to Hartree’s original derivation of the non-relativistic self-consistent field equation from Schrodinger’s equation. Here we are concerned with including both relativity and “ exchange ” effects and we show how Slater’s varia-tional method may be extended for this purpose. A difficulty arises in considering the relativistic theory of any problem concerning more than one electron since the correct wave equation for such a system is not known. Formulae have been given for the inter-action energy of two electrons, taking account of magnetic interactions and retardation, by Gaunt, Breit, and others. Since, however, none of these is to be regarded as exact, in the present paper the crude electrostatic expression for the potential energy will be used. The neglect of the magnetic interactions is not likely to lead to any great error for an atom consisting mainly of closed groups, since the magnetic field of a closed group vanishes. Also, since the self-consistent field type of approximation is concerned with the interaction of average distributions of electrons in one-electron wave functions, it seems probable that retardation does not play an important part. These effects are in any case likely to be of less importance than the improvement in the grouping of the wave functions which arises from using a wave equation which involves the spins implicitly.


Sign in / Sign up

Export Citation Format

Share Document