Continuation-Based Numerical Detection of After-Depolarization and Spike-Adding Thresholds

2013 ◽  
Vol 25 (4) ◽  
pp. 877-900 ◽  
Author(s):  
Jakub Nowacki ◽  
Hinke M. Osinga ◽  
Krasimira T. Tsaneva-Atanasova

The changes in neuronal firing pattern are signatures of brain function, and it is of interest to understand how such changes evolve as a function of neuronal biophysical properties. We address this important problem by the analysis and numerical investigation of a class of mechanistic mathematical models. We focus on a hippocampal pyramidal neuron model and study the occurrence of bursting related to the after-depolarization (ADP) that follows a brief current injection. This type of burst is a transient phenomenon that is not amenable to the classical bifurcation analysis done, for example, for periodic bursting oscillators. In this letter, we show how to formulate such transient behavior as a two-point boundary value problem (2PBVP), which can be solved using well-known continuation methods. The 2PBVP is formulated such that the transient response is represented by a finite orbit segment for which onsets of ADP and additional spikes in a burst can be detected as bifurcations during a one-parameter continuation. This in turn provides us with a direct method to approximate the boundaries of regions in a two-parameter plane where certain model behavior of interest occurs. More precisely, we use two-parameter continuation of the detected onset points to identify the boundaries between regions with and without ADP and bursts with different numbers of spikes. Our 2PBVP formulation is a novel approach to parameter sensitivity analysis that can be applied to a wide range of problems.

2013 ◽  
Vol 13 (2) ◽  
pp. 442-460 ◽  
Author(s):  
Y.-S. Wang ◽  
B.-W. Jeng ◽  
C.-S. Chien

AbstractWe study efficient spectral-collocation and continuation methods (SCCM) for rotating two-component Bose-Einstein condensates (BECs) and rotating two-component BECs in optical lattices, where the second kind Chebyshev polynomials are used as the basis functions for the trial function space. A novel two-parameter continuation algorithm is proposed for computing the ground state and first excited state solutions of the governing Gross-Pitaevskii equations (GPEs), where the classical tangent vector is split into two constraint conditions for the bordered linear systems. Numerical results on rotating two-component BECs and rotating two-component BECs in optical lattices are reported. The results on the former are consistent with the published numerical results.


2018 ◽  
Author(s):  
Jonathan De Roo ◽  
Nuri Yazdani ◽  
Emile Drijvers ◽  
Alessandro Lauria ◽  
Jorick Maes ◽  
...  

<p>Although solvent-ligand interactions play a major role in nanocrystal synthesis, dispersion formulation and assembly, there is currently no direct method to study this. Here we examine the broadening of <sup>1</sup>H NMR resonances associated with bound ligands, and turn this poorly understood descriptor into a tool to assess solvent-ligand interactions. We show that the line broadening has both a homogeneous and a heterogeneous component. The former is nanocrystal-size dependent and the latter results from solvent-ligand interactions. Our model is supported by experimental and theoretical evidence that correlates broad NMR lines with poor ligand solvation. This correlation is found across a wide range of solvents, extending from water to hexane, for both hydrophobic and hydrophilic ligand types, and for a multitude of oxide, sulfide and selenide nanocrystals. Our findings thus put forward NMR line shape analysis as an indispensable tool to form, investigate and manipulate nanocolloids.</p>


2021 ◽  
Vol 7 (17) ◽  
pp. eabf8283
Author(s):  
Sibao Liu ◽  
Pavel A. Kots ◽  
Brandon C. Vance ◽  
Andrew Danielson ◽  
Dionisios G. Vlachos

Single-use plastics impose an enormous environmental threat, but their recycling, especially of polyolefins, has been proven challenging. We report a direct method to selectively convert polyolefins to branched, liquid fuels including diesel, jet, and gasoline-range hydrocarbons, with high yield up to 85% over Pt/WO3/ZrO2 and HY zeolite in hydrogen at temperatures as low as 225°C. The process proceeds via tandem catalysis with initial activation of the polymer primarily over Pt, with subsequent cracking over the acid sites of WO3/ZrO2 and HY zeolite, isomerization over WO3/ZrO2 sites, and hydrogenation of olefin intermediates over Pt. The process can be tuned to convert different common plastic wastes, including low- and high-density polyethylene, polypropylene, polystyrene, everyday polyethylene bottles and bags, and composite plastics to desirable fuels and light lubricants.


2021 ◽  
Vol 5 (EICS) ◽  
pp. 1-23
Author(s):  
Markku Laine ◽  
Yu Zhang ◽  
Simo Santala ◽  
Jussi P. P. Jokinen ◽  
Antti Oulasvirta

Over the past decade, responsive web design (RWD) has become the de facto standard for adapting web pages to a wide range of devices used for browsing. While RWD has improved the usability of web pages, it is not without drawbacks and limitations: designers and developers must manually design the web layouts for multiple screen sizes and implement associated adaptation rules, and its "one responsive design fits all" approach lacks support for personalization. This paper presents a novel approach for automated generation of responsive and personalized web layouts. Given an existing web page design and preferences related to design objectives, our integer programming -based optimizer generates a consistent set of web designs. Where relevant data is available, these can be further automatically personalized for the user and browsing device. The paper includes presentation of techniques for runtime adaptation of the designs generated into a fully responsive grid layout for web browsing. Results from our ratings-based online studies with end users (N = 86) and designers (N = 64) show that the proposed approach can automatically create high-quality responsive web layouts for a variety of real-world websites.


Sign in / Sign up

Export Citation Format

Share Document