Inheritance of Hippocampal Place Fields Through Hebbian Learning: Effects of Theta Modulation and Phase Precession on Structure Formation

2015 ◽  
Vol 27 (8) ◽  
pp. 1624-1672 ◽  
Author(s):  
Tiziano D’Albis ◽  
Jorge Jaramillo ◽  
Henning Sprekeler ◽  
Richard Kempter

A place cell is a neuron that fires whenever the animal traverses a particular location of the environment—the place field of the cell. Place cells are found in two regions of the rodent hippocampus: CA3 and CA1. Motivated by the anatomical connectivity between these two regions and by the evidence for synaptic plasticity at these connections, we study how a place field in CA1 can be inherited from an upstream region such as CA3 through a Hebbian learning rule, in particular, through spike-timing-dependent plasticity (STDP). To this end, we model a population of CA3 place cells projecting to a single CA1 cell, and we assume that the CA1 input synapses are plastic according to STDP. With both numerical and analytical methods, we show that in the case of overlapping CA3 input place fields, the STDP learning rule leads to the formation of a place field in CA1. We then investigate the roles of the hippocampal theta modulation and phase precession on the inheritance process. We find that theta modulation favors the inheritance and leads to faster place field formation whereas phase precession changes the drift of CA1 place fields over time.

2019 ◽  
Vol 6 (4) ◽  
pp. 181098 ◽  
Author(s):  
Le Zhao ◽  
Jie Xu ◽  
Xiantao Shang ◽  
Xue Li ◽  
Qiang Li ◽  
...  

Non-volatile memristors are promising for future hardware-based neurocomputation application because they are capable of emulating biological synaptic functions. Various material strategies have been studied to pursue better device performance, such as lower energy cost, better biological plausibility, etc. In this work, we show a novel design for non-volatile memristor based on CoO/Nb:SrTiO 3 heterojunction. We found the memristor intrinsically exhibited resistivity switching behaviours, which can be ascribed to the migration of oxygen vacancies and charge trapping and detrapping at the heterojunction interface. The carrier trapping/detrapping level can be finely adjusted by regulating voltage amplitudes. Gradual conductance modulation can therefore be realized by using proper voltage pulse stimulations. And the spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in the device. Our results indicate the possibility of achieving artificial synapses with CoO/Nb:SrTiO 3 heterojunction. Compared with filamentary type of the synaptic device, our device has the potential to reduce energy consumption, realize large-scale neuromorphic system and work more reliably, since no structural distortion occurs.


2016 ◽  
Author(s):  
Bryan C. Souza ◽  
Adriano B. L. Tort

Hippocampal place cells convey spatial information through spike frequency (“rate coding”) and spike timing relative to the theta phase (“temporal coding”). Whether rate and temporal coding are due to independent or related mechanisms has been the subject of wide debate. Here we show that the spike timing of place cells couples to theta phase before major increases in firing rate, anticipating the animal’s entrance into the classical, rate-based place field. In contrast, spikes rapidly decouple from theta as the animal leaves the place field and firing rate decreases. Therefore, temporal coding has strong asymmetry around the place field center. We further show that the dynamics of temporal coding along space evolves in three stages: phase coupling, phase precession and phase decoupling. These results suggest that place cells represent more future than past locations through their spike timing and that independent mechanisms govern rate and temporal coding.


2014 ◽  
Vol 369 (1644) ◽  
pp. 20130175 ◽  
Author(s):  
Christian Keysers ◽  
Valeria Gazzola

Spike-timing-dependent plasticity is considered the neurophysiological basis of Hebbian learning and has been shown to be sensitive to both contingency and contiguity between pre- and postsynaptic activity. Here, we will examine how applying this Hebbian learning rule to a system of interconnected neurons in the presence of direct or indirect re-afference (e.g. seeing/hearing one's own actions) predicts the emergence of mirror neurons with predictive properties. In this framework, we analyse how mirror neurons become a dynamic system that performs active inferences about the actions of others and allows joint actions despite sensorimotor delays. We explore how this system performs a projection of the self onto others, with egocentric biases to contribute to mind-reading. Finally, we argue that Hebbian learning predicts mirror-like neurons for sensations and emotions and review evidence for the presence of such vicarious activations outside the motor system.


2021 ◽  
Author(s):  
Yuk-Hoi Yiu ◽  
Jill K Leutgeb ◽  
Christian Leibold

Running direction in the hippocampus is encoded by rate modulations of place field activity but also by spike timing correlations known as theta sequences. Whether directional rate codes and the directionality of place field correlations are related, however, has so far not been explored and therefore the nature of how directional information is encoded in the cornu ammonis remains unresolved. Here, using a previously published dataset that contains the spike activity of rat hippocampal place cells in the CA1, CA2 and CA3 subregions during free foraging of male Long-Evans rats in a 2D environment, we found that rate and spike timing codes are related. Opposite to a place field's preferred firing rate direction spikes are more likely to undergo theta phase precession and, hence, more strongly impact paired correlations. Furthermore, we identified a subset of field pairs whose theta correlations are intrinsic in that they maintain the same firing order when the running direction is reversed. Both effects are associated with differences in theta phase distributions, and are more prominent in CA3 than CA1. We thus hypothesize that intrinsic spiking is most prominent when the directionally modulated sensory-motor drive of hippocampal firing rates is minimal, suggesting that extrinsic and intrinsic sequences contribute to phase precession as two distinct mechanisms.


1989 ◽  
Vol 03 (07) ◽  
pp. 555-560 ◽  
Author(s):  
M.V. TSODYKS

We consider the Hopfield model with the most simple form of the Hebbian learning rule, when only simultaneous activity of pre- and post-synaptic neurons leads to modification of synapse. An extra inhibition proportional to full network activity is needed. Both symmetric nondiluted and asymmetric diluted networks are considered. The model performs well at extremely low level of activity p<K−1/2, where K is the mean number of synapses per neuron.


2004 ◽  
Vol 16 (3) ◽  
pp. 595-625 ◽  
Author(s):  
Ausra Saudargiene ◽  
Bernd Porr ◽  
Florentin Wörgötter

Spike-timing-dependent plasticity (STDP) is described by long-term potentiation (LTP), when a presynaptic event precedes a postsynaptic event, and by long-term depression (LTD), when the temporal order is reversed. In this article, we present a biophysical model of STDP based on a differential Hebbian learning rule (ISO learning). This rule correlates presynaptically the NMDA channel conductance with the derivative of the membrane potential at the synapse as the postsynaptic signal. The model is able to reproduce the generic STDP weight change characteristic. We find that (1) The actual shape of the weight change curve strongly depends on the NMDA channel characteristics and on the shape of the membrane potential at the synapse. (2) The typical antisymmetrical STDP curve (LTD and LTP) can become similar to a standard Hebbian characteristic (LTP only) without having to change the learning rule. This occurs if the membrane depolarization has a shallow onset and is long lasting. (3) It is known that the membrane potential varies along the dendrite as a result of the active or passive backpropagation of somatic spikes or because of local dendritic processes. As a consequence, our model predicts that learning properties will be different at different locations on the dendritic tree. In conclusion, such site-specific synaptic plasticity would provide a neuron with powerful learning capabilities.


Sign in / Sign up

Export Citation Format

Share Document