scholarly journals Mean First Passage Memory Lifetimes by Reducing Complex Synapses to Simple Synapses

2017 ◽  
Vol 29 (6) ◽  
pp. 1468-1527 ◽  
Author(s):  
Terry Elliott

Memory models that store new memories by forgetting old ones have memory lifetimes that are rather short and grow only logarithmically in the number of synapses. Attempts to overcome these deficits include “complex” models of synaptic plasticity in which synapses possess internal states governing the expression of synaptic plasticity. Integrate-and-express, filter-based models of synaptic plasticity propose that synapses act as low-pass filters, integrating plasticity induction signals before expressing synaptic plasticity. Such mechanisms enhance memory lifetimes, leading to an initial rise in the memory signal that is in radical contrast to other related, but nonintegrative, memory models. Because of the complexity of models with internal synaptic states, however, their dynamics can be more difficult to extract compared to “simple” models that lack internal states. Here, we show that by focusing only on processes that lead to changes in synaptic strength, we can integrate out internal synaptic states and effectively reduce complex synapses to simple synapses. For binary-strength synapses, these simplified dynamics then allow us to work directly in the transitions in perceptron activation induced by memory storage rather than in the underlying transitions in synaptic configurations. This permits us to write down master and Fokker-Planck equations that may be simplified under certain, well-defined approximations. These methods allow us to see that memory based on synaptic filters can be viewed as an initial transient that leads to memory signal rise, followed by the emergence of Ornstein-Uhlenbeck-like dynamics that return the system to equilibrium. We may use this approach to compute mean first passage time–defined memory lifetimes for complex models of memory storage.

2018 ◽  
Vol 13 (1) ◽  
pp. 10 ◽  
Author(s):  
Pengbo Xu ◽  
Weihua Deng

For the particles undergoing the anomalous diffusion with different waiting time distributions for different internal states, we derive the Fokker-Planck and Feymann-Kac equations, respectively, describing positions of the particles and functional distributions of the trajectories of particles; in particular, the equations governing the functional distribution of internal states are also obtained. The dynamics of the stochastic processes are analyzed and the applications, calculating the distribution of the first passage time and the distribution of the fraction of the occupation time, of the equations are given. For the further application of the newly built models, we make very detailed discussions on the none-immediately-repeated stochastic process, e.g., the random walk of smart animals.


2016 ◽  
Vol 28 (11) ◽  
pp. 2393-2460 ◽  
Author(s):  
Terry Elliott

Integrate-and-express models of synaptic plasticity propose that synapses integrate plasticity induction signals before expressing synaptic plasticity. By discerning trends in their induction signals, synapses can control destabilizing fluctuations in synaptic strength. In a feedforward perceptron framework with binary-strength synapses for associative memory storage, we have previously shown that such a filter-based model outperforms other, nonintegrative, “cascade”-type models of memory storage in most regions of biologically relevant parameter space. Here, we consider some natural extensions of our earlier filter model, including one specifically tailored to binary-strength synapses and one that demands a fixed, consecutive number of same-type induction signals rather than merely an excess before expressing synaptic plasticity. With these extensions, we show that filter-based models outperform nonintegrative models in all regions of biologically relevant parameter space except for a small sliver in which all models encode memories only weakly. In this sliver, which model is superior depends on the metric used to gauge memory lifetimes (whether a signal-to-noise ratio or a mean first passage time). After comparing and contrasting these various filter models, we discuss the multiple mechanisms and timescales that underlie both synaptic plasticity and memory phenomena and suggest that multiple, different filtering mechanisms may operate at single synapses.


2017 ◽  
Vol 29 (12) ◽  
pp. 3219-3259 ◽  
Author(s):  
Terry Elliott

Memory models based on synapses with discrete and bounded strengths store new memories by forgetting old ones. Memory lifetimes in such memory systems may be defined in a variety of ways. A mean first passage time (MFPT) definition overcomes much of the arbitrariness and many of the problems associated with the more usual signal-to-noise ratio (SNR) definition. We have previously computed MFPT lifetimes for simple, binary-strength synapses that lack internal, plasticity-related states. In simulation we have also seen that for multistate synapses, optimality conditions based on SNR lifetimes are absent with MFPT lifetimes, suggesting that such conditions may be artifactual. Here we extend our earlier work by computing the entire first passage time (FPT) distribution for simple, multistate synapses, from which all statistics, including the MFPT lifetime, may be extracted. For this, we develop a Fokker-Planck equation using the jump moments for perceptron activation. Two models are considered that satisfy a particular eigenvector condition that this approach requires. In these models, MFPT lifetimes do not exhibit optimality conditions, while in one but not the other, SNR lifetimes do exhibit optimality. Thus, not only are such optimality conditions artifacts of the SNR approach, but they are also strongly model dependent. By examining the variance in the FPT distribution, we may identify regions in which memory storage is subject to high variability, although MFPT lifetimes are nevertheless robustly positive. In such regions, SNR lifetimes are typically (defined to be) zero. FPT-defined memory lifetimes therefore provide an analytically superior approach and also have the virtue of being directly related to a neuron's firing properties.


1980 ◽  
Vol 45 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Milan Šolc

The establishment of chemical equilibrium in a system with a reversible first order reaction is characterized in terms of the distribution of first passage times for the state of exact chemical equilibrium. The mean first passage time of this state is a linear function of the logarithm of the total number of particles in the system. The equilibrium fluctuations of composition in the system are characterized by the distribution of the recurrence times for the state of exact chemical equilibrium. The mean recurrence time is inversely proportional to the square root of the total number of particles in the system.


Author(s):  
Natalie Packham ◽  
Lutz Schloegl ◽  
Wolfgang M. Schmidt

Sign in / Sign up

Export Citation Format

Share Document