Performance of a pool-and-weir fish pass for small bottom-dwelling freshwater fish species in a regulated lowland river

2007 ◽  
Vol 57 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Evelien Maerten ◽  
Marcel Eens ◽  
Guy Knaepkens

AbstractAlthough small benthic freshwater fish species are an important biological component of fish assemblages and free instream movement is indispensable for their survival, they are often neglected in fish pass performance studies. In this study, a capture-mark-recapture approach was used to assess whether small bottom-dwelling species, including gudgeon (Gobio gobio), stone loach (Barbatula barbatula), spined loach (Cobitis taenia) and bullhead (Cottus gobio), were able to cross a pool-and-weir fish pass in a regulated lowland river. Some tagged individuals of stone loach (18%), gudgeon (7%) and spined loach (2%) managed to successfully ascend the fish pass under study, despite the fact that water velocity levels in the different overflows of the facility (between 0.55-1.22 m/s) exceeded the critical swimming speed of all three species. Although this suggests that a pool-and-weir fish pass is a able to facilitate upstream movement of some small benthic species in a regulated river, more detailed research incorporating advanced tagging and retrieving techniques is necessary.

2011 ◽  
Vol 62 (9) ◽  
pp. 1082 ◽  
Author(s):  
John R. Morrongiello ◽  
Stephen J. Beatty ◽  
James C. Bennett ◽  
David A. Crook ◽  
David N. E. N. Ikedife ◽  
...  

Freshwater environments and their fishes are particularly vulnerable to climate change because the persistence and quality of aquatic habitat depend heavily on climatic and hydrologic regimes. In Australia, projections indicate that the rate and magnitude of climate change will vary across the continent. We review the likely effects of these changes on Australian freshwater fishes across geographic regions encompassing a diversity of habitats and climatic variability. Commonalities in the predicted implications of climate change on fish included habitat loss and fragmentation, surpassing of physiological tolerances and spread of alien species. Existing anthropogenic stressors in more developed regions are likely to compound these impacts because of the already reduced resilience of fish assemblages. Many Australian freshwater fish species are adapted to variable or unpredictable flow conditions and, in some cases, this evolutionary history may confer resistance or resilience to the impacts of climate change. However, the rate and magnitude of projected change will outpace the adaptive capacities of many species. Climate change therefore seriously threatens the persistence of many of Australia’s freshwater fish species, especially of those with limited ranges or specific habitat requirements, or of those that are already occurring close to physiological tolerance limits. Human responses to climate change should be proactive and focus on maintaining population resilience through the protection of habitat, mitigation of current anthropogenic stressors, adequate planning and provisioning of environmental flows and the consideration of more interventionist options such as managed translocations.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Jonathan C Levin ◽  
Darragh J Woodford ◽  
Gavin C Snow

Urbanisation in South Africa has resulted in the degradation of aquatic ecosystems across a rural-to-urban gradient; impacting the availability of clean water. Biological organisms, including fish assemblages, have been used as indicators of environmental change, as part of monitoring programmes designed to protect and improve aquatic ecosystem conditions. However, the effectiveness of individual freshwater fish species as bio-indicators for urban impacts has not yet been evaluated. This study investigated the occurrence of freshwater fish species across three urban gradients within the upper Crocodile River sub-management area as potential bio-indicators. Having collected presence and absence data, five native fish species were determined to be widespread. Their effectiveness as bio-indicators for six environmental drivers, identified through principle component analysis, was assessed using species stressor-response curves derived from logistic regression analysis. Of the five species, the largescale yellowfish (Labeobarbus marequensis) and stargazer catfish (Amphilius uranoscopus) showed potential to be effective bio-indicators for urban impacts on aquatic water quality and instream habitat. These taxa, as effective urban bio-indicators, have the potential to improve the efficiency of urban river health assessments through reducing data gathering and staff training requirements.


2021 ◽  
Vol 9 ◽  
Author(s):  
Giovanni Negro ◽  
Stefano Fenoglio ◽  
Emanuele Quaranta ◽  
Claudio Comoglio ◽  
Isabella Garzia ◽  
...  

The MesoHABitat SImulation Model (MesoHABSIM) is the preferred method to calculate spatio-temporal variation in the fish habitat availability in Italian rivers. With the aim of improving the applicability of the MesoHABSIM approach in the Italian territory, we carried out a systematic review of physical habitat preferences for 31 freshwater fish species and three freshwater lampreys, representing 75% of the total indigenous freshwater fish community of Italy. Information related to suitable ranges of depth, flow velocity, biotic/abiotic substrates, covers/shelters was collected and summarized for two critical life stages (adult and juvenile) and two bioperiods (rearing/growth and spawning). Overall, 250 publications were reviewed, classified as 206 peer-reviewed papers, 20 books, 7 PhD thesis, and 17 grey literature sources. Our analysis revealed substantial deficits of information about habitat requirements for more than 30% of Italian freshwater fish species. This information is particularly scarce for the most threatened endemic species, especially for their most critical bioperiod (i.e., spawning). With the aim of preserving freshwater fish biodiversity as required in the EU Biodiversity Strategy for 2030 (European Commission, 2020), accurate information on physical habitat requirements for spawning is crucial. As an example application of MesoHABSIM, the collected habitat preference information was used to define and apply mesohabitat suitability criteria for one fish species (Telestes muticellus) in a regulated river reach of Argentina Creek (Province of Imperia, Italy). This analysis demonstrates the potential for applying information from the current review to other fish species.


Author(s):  
Sam Wenaas Perrin ◽  
Kim Magnus Bærum ◽  
Ingeborg Palm Helland ◽  
Anders Gravbrøt Finstad

Author(s):  
Maria João Costa ◽  
Gonçalo Duarte ◽  
Pedro Segurado ◽  
Paulo Branco

Sign in / Sign up

Export Citation Format

Share Document