A neural link between feeling and hearing

2012 ◽  
Vol 25 (0) ◽  
pp. 56
Author(s):  
Tony Ro ◽  
Timothy Ellmore ◽  
Michael S. Beauchamp

Hearing and feeling both rely upon the transduction of physical events into frequency-based neural codes, suggesting that the auditory system may be intimately related to the somatosensory system. In this study, we provide evidence that the neural substrates for audition and somatosensation are anatomically linked. Using diffusion tensor imaging with both deterministic and probabilistic tractography to measure white matter connectivity, we show that there are extensive connections between the primary auditory cortex and the primary and secondary somatosensory regions in human cerebral cortex. We further show that these cross-connections are diminished between auditory and primary somatosensory cortex and exaggerated between auditory and secondary somatosensory cortex in the lesioned hemisphere of a patient (SR) with acquired auditory-tactile synesthesia, in whom sounds alone produce bodily sensations. These results provide an anatomical basis for multisensory interactions between audition and somatosensation and suggest that cross-talk between these regions may explain why some sounds, such as nails screeching down a chalkboard or an audible mosquito, can induce feelings of touch, especially on the left half of patient SR.

2004 ◽  
Vol 91 (3) ◽  
pp. 1327-1336 ◽  
Author(s):  
Barbara Brett-Green ◽  
Marcy Paulsen ◽  
Richard J. Staba ◽  
Eva Fifková ◽  
Daniel S. Barth

In rodents, as in other species, regions of secondary somatosensory cortex (SII) may be distinguished from primary cortex (SI) both anatomically and electrophysiologically. However, the number of rodent SII subregions, their somatotopic organization, and their function are poorly understood. The presence of multisensory responsive neurons in some areas of SII suggests that one of its roles may be in the integration of somatosensory information with information from other sensory modalities. In this study, we used auditory, somatosensory, or combined auditory/somatosensory stimuli, and high-resolution epipial-evoked potential maps of rat SII to identify the number of spatially discrete subregions, estimate their somatotopic organization, and delineate regions with multisensory response properties. Maps revealed two distinct subregions within SII, one rostral and the other caudal, which were situated lateral to the posteromedial barrel subfield. Distinct somatotopies were evident at both SII loci, and analysis of evoked responses within both areas indicated multisensory interactions. These data are consistent with the presence of classically defined rostral SII regions and provide functional evidence for a lesser known, but distinct, caudal SII area. Furthermore, evidence for multisensory interactions within SII suggests that both secondary areas may process features specifically associated with multisensory integration in parallel with unimodal processing in primary areas.


2021 ◽  
pp. 0271678X2199098
Author(s):  
Saima Hilal ◽  
Siwei Liu ◽  
Tien Yin Wong ◽  
Henri Vrooman ◽  
Ching-Yu Cheng ◽  
...  

To determine whether white matter network disruption mediates the association between MRI markers of cerebrovascular disease (CeVD) and cognitive impairment. Participants (n = 253, aged ≥60 years) from the Epidemiology of Dementia in Singapore study underwent neuropsychological assessments and MRI. CeVD markers were defined as lacunes, white matter hyperintensities (WMH), microbleeds, cortical microinfarcts, cortical infarcts and intracranial stenosis (ICS). White matter microstructure damage was measured as fractional anisotropy and mean diffusivity by tract based spatial statistics from diffusion tensor imaging. Cognitive function was summarized as domain-specific Z-scores. Lacunar counts, WMH volume and ICS were associated with worse performance in executive function, attention, language, verbal and visual memory. These three CeVD markers were also associated with white matter microstructural damage in the projection, commissural, association, and limbic fibers. Path analyses showed that lacunar counts, higher WMH volume and ICS were associated with executive and verbal memory impairment via white matter disruption in commissural fibers whereas impairment in the attention, visual memory and language were mediated through projection fibers. Our study shows that the abnormalities in white matter connectivity may underlie the relationship between CeVD and cognition. Further longitudinal studies are needed to understand the cause-effect relationship between CeVD, white matter damage and cognition.


2019 ◽  
Vol 225 (4) ◽  
pp. 1401-1411 ◽  
Author(s):  
Szabolcs David ◽  
Lieke Heesink ◽  
Elbert Geuze ◽  
Thomas Gladwin ◽  
Jack van Honk ◽  
...  

AbstractAggression after military deployment is a common occurrence in veterans. Neurobiological research has shown that aggression is associated with a dysfunction in a network connecting brain regions implicated in threat processing and emotion regulation. However, aggression may also be related to deficits in networks underlying communication and social cognition. The uncinate and arcuate fasciculi are integral to these networks, thus studying potential abnormalities in these white matter connections can further our understanding of anger and aggression problems in military veterans. Here, we use diffusion tensor imaging tractography to investigate white matter microstructural properties of the uncinate fasciculus and the arcuate fasciculus in veterans with and without anger and aggression problems. A control tract, the parahippocampal cingulum was also included in the analyses. More specifically, fractional anisotropy (FA) estimates are derived along the trajectory from all fiber pathways and compared between both groups. No between-group FA differences are observed for the uncinate fasciculus and the cingulum, however parts of the arcuate fasciculus show a significantly lower FA in the group of veterans with aggression and anger problems. Our data suggest that abnormalities in arcuate fasciculus white matter connectivity that are related to self-regulation may play an important role in the etiology of anger and aggression in military veterans.


Neuron ◽  
2020 ◽  
Vol 106 (3) ◽  
pp. 515-525.e5 ◽  
Author(s):  
Cameron Condylis ◽  
Eric Lowet ◽  
Jianguang Ni ◽  
Karina Bistrong ◽  
Timothy Ouellette ◽  
...  

Author(s):  
Dimitrios C. Karampinos ◽  
Robert Dawe ◽  
Konstantinos Arfanakis ◽  
John G. Georgiadis

Diffusion Magnetic Resonance Imaging (diffusion MRI) can provide important information about tissue microstructure by probing the diffusion of water molecules in a biological tissue. Although originally proposed for the characterization of cerebral white matter connectivity and pathologies, its implementation has extended to many other areas of the human body. In a parallel development, a number of diffusion models have been proposed in order to extract the underlying tissue microstructural properties from the diffusion MRI signal. The present study reviews the basic considerations that have to be taken into account in the selection of the diffusion encoding parameters in diffusion MRI acquisition. Both diffusion tensor imaging (DTI) and high-order schemes are reviewed. The selection of these parameters relies strongly on requirements of the adopted diffusion model and the diffusion characteristics of the tissue under study. The authors review several successful parameter selection strategies for the imaging of the human brain, and conclude with the basics of parameter optimization on promising applications of the technique on other tissues, such as the spinal cord, the myocardium, and the skeletal muscles.


Sign in / Sign up

Export Citation Format

Share Document