scholarly journals The Mystery of Louis Verrey (1854-1916)

Gesnerus ◽  
1993 ◽  
Vol 50 (1-2) ◽  
pp. 96-112
Author(s):  
Semir Zeki

In 1888, Louis Verrey, a Swiss ophthalmologist, stated emphatically that there is a "centre for the chromatic sense" in the human brain and that it is located in the lingual and fusiform gyri. He did not, however, consider the “colour centre” to be a separate area but a large sub-division of the primary visual cortex. His evidence was quickly dismissed and forgotten. It was not to be taken seriously again until after the experimental discovery of functional specialization in the monkey brain. This paper considers why it is that Verrey did not consider the “colour centre” to be a separate cortical area, distinct from the primary visual cortex, why his evidence was so quickly and effectively dismissed, and why it is that Verrey did not pursue the logic of his findings.

Science ◽  
2019 ◽  
Vol 363 (6422) ◽  
pp. 64-69 ◽  
Author(s):  
Riccardo Beltramo ◽  
Massimo Scanziani

Visual responses in the cerebral cortex are believed to rely on the geniculate input to the primary visual cortex (V1). Indeed, V1 lesions substantially reduce visual responses throughout the cortex. Visual information enters the cortex also through the superior colliculus (SC), but the function of this input on visual responses in the cortex is less clear. SC lesions affect cortical visual responses less than V1 lesions, and no visual cortical area appears to entirely rely on SC inputs. We show that visual responses in a mouse lateral visual cortical area called the postrhinal cortex are independent of V1 and are abolished upon silencing of the SC. This area outperforms V1 in discriminating moving objects. We thus identify a collicular primary visual cortex that is independent of the geniculo-cortical pathway and is capable of motion discrimination.


NeuroImage ◽  
1996 ◽  
Vol 3 (3) ◽  
pp. S204 ◽  
Author(s):  
W. Chen ◽  
T. Kato ◽  
X.-H. Zhu ◽  
S. Ogawa ◽  
K. Ugurbil

2014 ◽  
Vol 111 (6) ◽  
pp. 1203-1213 ◽  
Author(s):  
Carlyn A. Patterson ◽  
Jacob Duijnhouwer ◽  
Stephanie C. Wissig ◽  
Bart Krekelberg ◽  
Adam Kohn

Recent stimulus history, or adaptation, can alter neuronal response properties. Adaptation effects have been characterized in a number of visually responsive structures, from the retina to higher visual cortex. However, it remains unclear whether adaptation effects across stages of the visual system take a similar form in response to a particular sensory event. This is because studies typically probe a single structure or cortical area, using a stimulus ensemble chosen to provide potent drive to the cells of interest. Here we adopt an alternative approach and compare adaptation effects in primary visual cortex (V1) and area MT using identical stimulus ensembles. Previous work has suggested these areas adjust to recent stimulus drive in distinct ways. We show that this is not the case: adaptation effects in V1 and MT can involve weak or strong loss of responsivity and shifts in neuronal preference toward or away from the adapter, depending on stimulus size and adaptation duration. For a particular stimulus size and adaptation duration, however, effects are similar in nature and magnitude in V1 and MT. We also show that adaptation effects in MT of awake animals depend strongly on stimulus size. Our results suggest that the strategies for adjusting to recent stimulus history depend more strongly on adaptation duration and stimulus size than on the cortical area. Moreover, they indicate that different levels of the visual system adapt similarly to recent sensory experience.


Sign in / Sign up

Export Citation Format

Share Document