stimulus size
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 20)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Author(s):  
James O’Keeffe ◽  
Vivek Nityananda ◽  
Jenny Read

AbstractWe present a simple model which can account for the stereoscopic sensitivity of praying mantis predatory strikes. The model consists of a single “disparity sensor”: a binocular neuron sensitive to stereoscopic disparity and thus to distance from the animal. The model is based closely on the known behavioural and neurophysiological properties of mantis stereopsis. The monocular inputs to the neuron reflect temporal change and are insensitive to contrast sign, making the sensor insensitive to interocular correlation. The monocular receptive fields have a excitatory centre and inhibitory surround, making them tuned to size. The disparity sensor combines inputs from the two eyes linearly, applies a threshold and then an exponent output nonlinearity. The activity of the sensor represents the model mantis’s instantaneous probability of striking. We integrate this over the stimulus duration to obtain the expected number of strikes in response to moving targets with different stereoscopic distance, size and vertical disparity. We optimised the parameters of the model so as to bring its predictions into agreement with our empirical data on mean strike rate as a function of stimulus size and distance. The model proves capable of reproducing the relatively broad tuning to size and narrow tuning to stereoscopic distance seen in mantis striking behaviour. The model also displays realistic responses to vertical disparity. Most surprisingly, although the model has only a single centre-surround receptive field in each eye, it displays qualitatively the same interaction between size and distance as we observed in real mantids: the preferred size increases as prey distance increases beyond the preferred distance. We show that this occurs because of a stereoscopic “false match” between the leading edge of the stimulus in one eye and its trailing edge in the other; further work will be required to find whether such false matches occur in real mantises. This is the first image-computable model of insect stereopsis, and reproduces key features of both neurophysiology and striking behaviour.


2021 ◽  
Vol 2021 (29) ◽  
pp. 99-104
Author(s):  
Marcel Lucassen ◽  
Dragan Sekulovski ◽  
Marc Lambooij ◽  
Qiang Xu ◽  
Ronnier Luo

In this research we compare chromatic contrast sensitivity models for two separate datasets and for the pooled dataset. They were obtained from two studies employing a very similar experimental paradigm. The data represent threshold visibilities of chromatic Gabor patterns varying in spatial frequency, background chromaticity, direction of color modulation and luminance, at constant stimulus size. Using the extended data set, we reconfirm our previously reported finding that a model based on coloropponent contrast signals is an improvement over a cone contrast model. However, when linear background scaling in classic cone contrast is replaced by nonlinear background scaling, an improvement of almost similar size is obtained. The results of this study can be of interest for the development of vision models employing the processing of spatio-chromatic information.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3072
Author(s):  
Andrea Messina ◽  
Davide Potrich ◽  
Ilaria Schiona ◽  
Valeria Anna Sovrano ◽  
Giorgio Vallortigara

It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Corey M. Ziemba ◽  
Eero P. Simoncelli

AbstractSensory processing necessitates discarding some information in service of preserving and reformatting more behaviorally relevant information. Sensory neurons seem to achieve this by responding selectively to particular combinations of features in their inputs, while averaging over or ignoring irrelevant combinations. Here, we expose the perceptual implications of this tradeoff between selectivity and invariance, using stimuli and tasks that explicitly reveal their opposing effects on discrimination performance. We generate texture stimuli with statistics derived from natural photographs, and ask observers to perform two different tasks: Discrimination between images drawn from families with different statistics, and discrimination between image samples with identical statistics. For both tasks, the performance of an ideal observer improves with stimulus size. In contrast, humans become better at family discrimination but worse at sample discrimination. We demonstrate through simulations that these behaviors arise naturally in an observer model that relies on a common set of physiologically plausible local statistical measurements for both tasks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Hau Lew ◽  
Scott B. Stevenson ◽  
Daniel R. Coates

AbstractInterocular suppression is the phenomenon in which the signal from one eye inhibits the other eye in the presence of dissimilar images. Various clinical and laboratory-based tests have been used to assess suppression, which vary in color, contrast, and stimulus size. These stimulus variations may yield different spatial extents of suppression, which makes it difficult to compare the outcomes. To evaluate the role of stimulus characteristics, we measured the suppression zone using a binocular rivalry paradigm in normally-sighted observers by systematically varying the stimulus parameters. The stimuli consist of a constantly visible horizontal reference seen by one eye while two vertical suppressors were presented to the other eye. With a keypress, the suppressors appeared for 1 s, to induce a transient suppression zone in the middle part of the reference. Subjects adjusted the width between the suppressors to determine the zone. The zone decreased significantly with increasing spatial frequency and lower contrast. The width was 1.4 times larger than the height. The zone was smaller with negative compared to positive contrast polarity but independent of eye dominance, luminance, and colored filters. A departure from scale invariance was captured with a model suggesting a stimulus-dependent and a small fixed non-stimulus-dependent portion.


Author(s):  
Jan Kremers ◽  
Avinash J. Aher ◽  
Yassen Popov ◽  
Maziar Mirsalehi ◽  
Cord Huchzermeyer

Abstract Purpose To study the effect of stimulus size and temporal frequency on the relative contribution of luminance and L-/M-cone opponent signals in the ERG. Methods In four healthy, color normal subjects, ERG responses to heterochromatic stimuli with sinusoidal, counter-phase modulation of red and green LEDs were measured. By inverse variation of red and green contrasts, we varied luminance contrast while keeping L-/M-cone opponent chromatic contrast constant. The first harmonic components in the full field ERGs are independent of stimulus contrast at 12 Hz, while responses to 36 Hz stimuli vary, reaching a minimum close to isoluminance. It was assumed that ERG responses reflect L-/M-cone opponency at 12 Hz and luminance at 36 Hz. In this study, we modeled the influence of temporal frequency on the relative contribution of these mechanisms at intermediate frequencies, measured the influence of stimulus size on model parameters, and analyzed the second harmonic component at 12 Hz. Results The responses at all frequencies and stimulus sizes could be described by a linear vector addition of luminance and L-/M-cone opponent reflecting ERGs. The contribution of the luminance mechanism increased with increasing temporal frequency and with increasing stimulus size, whereas the gain of the L-/M-cone opponent mechanism was independent of stimulus size and was larger at lower temporal frequencies. Thus, the luminance mechanism dominated at lower temporal frequencies with large stimuli. At 12 Hz, the second harmonic component reflected the luminance mechanism. Conclusions The ERGs to heterochromatic stimuli can be fully described in terms of linear combinations of responses in the (magnocellular) luminance and the (parvocellular) L-/M-opponent retino-geniculate pathways. The non-invasive study of these pathways in human subjects may have implications for basic research and for clinical research.


2021 ◽  
Author(s):  
Shiyu Wang ◽  
Ling Huang ◽  
Qinglin Chen ◽  
Jingyi Wang ◽  
Siting Xu ◽  
...  

Although bottom-up attention can improve visual performance with and without awareness, whether they are governed by a common neural computation remains unclear. Using a modified Posner paradigm with backward masking, we found that both the attention-triggered cueing effect with and without awareness displayed a monotonic gradient profile (Gaussian-like). The scope of this profile, however, was significantly wider with than without awareness. Subsequently, for each subject, the stimulus size was manipulated as their respective mean scopes with and without awareness while stimulus contrast was varied in a spatial cueing task. By measuring the gain pattern of contrast-response functions, we observed changes in the cueing effect consonant with changes in contrast gain for bottom-up attention with awareness and response gain for bottom-up attention without awareness. Our findings indicate an awareness-dependent normalization framework of visual bottom-up attention, placing a necessary constraint, namely, awareness, on our understanding of the neural computations underlying visual attention.


Author(s):  
Wladimir Kirsch ◽  
Tim Kitzmann ◽  
Wilfried Kunde

AbstractThe present study explored the origin of perceptual changes repeatedly observed in the context of actions. In Experiment 1, participants tried to hit a circular target with a stylus movement under restricted feedback conditions. We measured the perception of target size during action planning and observed larger estimates for larger movement distances. In Experiment 2, we then tested the hypothesis that this action specific influence on perception is due to changes in the allocation of spatial attention. For this purpose, we replaced the hitting task by conditions of focused and distributed attention and measured the perception of the former target stimulus. The results revealed changes in the perceived stimulus size very similar to those observed in Experiment 1. These results indicate that action’s effects on perception root in changes of spatial attention.


Sign in / Sign up

Export Citation Format

Share Document