Soluble Polyimides Based On Aromatic Diamines Bearing Long-Chain Alkyl Groups

Author(s):  
Y. Tsuda
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yusuke Tsuda ◽  
Yuki Matsuda ◽  
Takaaki Matsuda

Novel soluble polyimides having long-chain alkyl groups on their side chain were synthesizedviapolymer reaction with the polyimides having phenolic OH groups and 3,4,5-tris(dodecyloxy)benzoic acid (12GA) using N,N′-dicyclohexylcarbodiimide (DCC) as a dehydration reagent. The polyimides having phenolic OH groups were synthesized from the tetracarboxylic dianhydrides such as 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (cyclohexene-DA), 4,4′-hexafluoroisopropylidendi(phthalic anhydride) (6FDA), and 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA) and aromatic diamines such as 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB). The polymer reactions were carried out in NMP and the progresses of polymer reactions were quantitatively monitored by1H NMR measurements (conversion; 12.2–98.7%). The obtained polyimides bearing long-chain alkyl groups have enough molecular weights, good film-forming ability, good solubility for various organic solvents, and enough thermal stability. The water contact angles of the polyimide films were investigated, and it is noted that the introduction of long-chain alkyl groups increases the hydrophobicity of polyimide surface. These polyimides are expected to be applicable as the functional materials for microelectronics such as the alignment layers of LCDs.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Carlos Corona-García ◽  
Alejandro Onchi ◽  
Arlette A. Santiago ◽  
Araceli Martínez ◽  
Daniella Esperanza Pacheco-Catalán ◽  
...  

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4′-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4′-diamino-2,2′-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm−1 at 30 °C after activation of the polymer membrane.


Sign in / Sign up

Export Citation Format

Share Document