scholarly journals Prolonged Cold Ischemia Induces Necroptotic Cell Death in Ischemia–Reperfusion Injury and Contributes to Primary Graft Dysfunction after Lung Transplantation

2019 ◽  
Vol 61 (2) ◽  
pp. 244-256 ◽  
Author(s):  
Xingan Wang ◽  
Michael Emmet O’Brien ◽  
Junyi Yu ◽  
Che Xu ◽  
Qiang Zhang ◽  
...  
2016 ◽  
pp. 251-257 ◽  
Author(s):  
O. SZARSZOI ◽  
J. BESIK ◽  
M. SMETANA ◽  
J. MALY ◽  
M. URBAN ◽  
...  

Primary graft dysfunction (PGD) is a life-threatening complication among heart transplant recipients and a major cause of early mortality. Although the pathogenesis of PGD is still unclear, ischemia/reperfusion injury has been identified as a predominant factor. Both necrosis and apoptosis contribute to the loss of cardiomyocytes during ischemia/reperfusion injury, and this loss of cells can ultimately lead to PGD. The aim of our prospective study was to find out whether cell death, necrosis and apoptosis markers present in the donor myocardium can predict PGD. The prospective study involved 64 consecutive patients who underwent orthotopic heart transplantation at our institute between September 2010 and January 2013. High-sensitive cardiac troponin T (hs-cTnT) as a marker of minor myocardial necrosis was detected from arterial blood samples before the donor’s pericardium was opened. Apoptosis (caspase-3, active + pro-caspase-3, bcl-2, TUNEL) was assessed from bioptic samples taken from the right ventricle prior graft harvesting. In our study, 14 % of transplant recipients developed PGD classified according to the standardized definition proposed by the ISHLT Working Group. We did not find differences between the groups in regard to hs-cTnT serum levels. The mean hs-cTnT value for the PGD group was 57.4±22.9 ng/l, compared to 68.4±10.8 ng/l in the group without PGD. The presence and severity of apoptosis in grafted hearts did not differ between grafts without PGD and hearts that subsequently developed PGD. In conclusion, our findings did not demonstrate any association between measured myocardial cell death, necrosis or apoptosis markers in donor myocardium and PGD in allograft recipients. More detailed investigations of cell death signaling pathways in transplanted hearts are required.


2021 ◽  
Vol 12 ◽  
Author(s):  
Parth M. Patel ◽  
Margaret R. Connolly ◽  
Taylor M. Coe ◽  
Anthony Calhoun ◽  
Franziska Pollok ◽  
...  

The recent dramatic advances in preventing “initial xenograft dysfunction” in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated “primary graft dysfunction” in allotransplantation and consider how they correspond with “xeno-associated” injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Panpan Zheng ◽  
Jiyu Kang ◽  
Entong Xing ◽  
Bin Zheng ◽  
Xueyao Wang ◽  
...  

Background: Lung inflation with hydrogen is an effective method to protect donor lungs from lung ischemia-reperfusion injury (IRI). This study aimed to examine the effect of lung inflation with 3% hydrogen during the cold ischemia phase on pyroptosis in lung grafts of rats.Methods: Adult male Wistar rats were randomly divided into the sham group, the control group, the oxygen (O2) group, and the hydrogen (H2) group. The sham group underwent thoracotomy but no lung transplantation. In the control group, the donor lungs were deflated for 2 h. In the O2 and H2 groups, the donor lungs were inflated with 40% O2 + 60% N2 and 3% H2 + 40% O2 + 57% N2, respectively, at 10 ml/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. Two hours after orthotopic lung transplantation, the recipients were euthanized.Results: Compared with the control group, the O2 and H2 groups improved oxygenation indices, decreases the inflammatory response and oxidative stress, reduced lung injury, and improved pressure-volume (P-V) curves. H2 had a better protective effect than O2. Furthermore, the levels of the pyroptosis-related proteins selective nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteinyl aspartate specific proteinase (caspase)-1 p20, and the N-terminal of gasdermin D (GSDMD-N) were decreased in the H2 group.Conclusion: Lung inflation with 3% hydrogen during the cold ischemia phase inhibited the inflammatory response, oxidative stress, and pyroptosis and improved the function of the graft. Inhibiting reactive oxygen species (ROS) production may be the main mechanism of the antipyroptotic effect of hydrogen.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Alessandro Bertani ◽  
Vitale Miceli ◽  
Lavinia De Monte ◽  
Giovanna Occhipinti ◽  
Valeria Pagano ◽  
...  

Primary graft dysfunction (PGD) and ischemia-reperfusion injury (IRI) occur in up to 30% of patients undergoing lung transplantation and may impact on the clinical outcome. Several strategies for the prevention and treatment of PGD have been proposed, but with limited use in clinical practice. In this study, we investigate the potential application of sevoflurane (SEV) preconditioning to mitigate IRI after lung transplantation. The study included two groups of swines (preconditioned and not preconditioned with SEV) undergoing left lung transplantation after 24-hour of cold ischemia. Recipients’ data was collected for 6 hours after reperfusion. Outcome analysis included assessment of ventilatory, hemodynamic, and hemogasanalytic parameters, evaluation of cellularity and cytokines in BAL samples, and histological analysis of tissue samples. Hemogasanalytic, hemodynamic, and respiratory parameters were significantly favorable, and the histological score showed less inflammatory and fibrotic injury in animals receiving SEV treatment. BAL cellular and cytokine profiling showed an anti-inflammatory pattern in animals receiving SEV compared to controls. In a swine model of lung transplantation after prolonged cold ischemia, SEV showed to mitigate the adverse effects of ischemia/reperfusion and to improve animal survival. Given the low cost and easy applicability, the administration of SEV in lung donors may be more extensively explored in clinical practice.


Perfusion ◽  
2020 ◽  
Vol 35 (7) ◽  
pp. 587-590
Author(s):  
Brandon C Shade ◽  
Steven Dudley ◽  
Tara McCabe ◽  
Kathryn Gray-DeAngelis

Lung transplantation in the United States has steadily grown over the last decade. Major attention has been with the understanding of lung ischemia–reperfusion injury and how it relates to primary graft dysfunction. In 2015, our institution implemented the use of a pulmonoplegia solution during recipient surgery of lung transplantation. A unique circuit utilizing the heart lung machine is used to deliver the pulmonoplegia solution. This system is considered to be a key contributing factor to the success of our lung transplant program.


Sign in / Sign up

Export Citation Format

Share Document