scholarly journals Lung Inflation With Hydrogen During the Cold Ischemia Phase Alleviates Lung Ischemia-Reperfusion Injury by Inhibiting Pyroptosis in Rats

2021 ◽  
Vol 12 ◽  
Author(s):  
Panpan Zheng ◽  
Jiyu Kang ◽  
Entong Xing ◽  
Bin Zheng ◽  
Xueyao Wang ◽  
...  

Background: Lung inflation with hydrogen is an effective method to protect donor lungs from lung ischemia-reperfusion injury (IRI). This study aimed to examine the effect of lung inflation with 3% hydrogen during the cold ischemia phase on pyroptosis in lung grafts of rats.Methods: Adult male Wistar rats were randomly divided into the sham group, the control group, the oxygen (O2) group, and the hydrogen (H2) group. The sham group underwent thoracotomy but no lung transplantation. In the control group, the donor lungs were deflated for 2 h. In the O2 and H2 groups, the donor lungs were inflated with 40% O2 + 60% N2 and 3% H2 + 40% O2 + 57% N2, respectively, at 10 ml/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. Two hours after orthotopic lung transplantation, the recipients were euthanized.Results: Compared with the control group, the O2 and H2 groups improved oxygenation indices, decreases the inflammatory response and oxidative stress, reduced lung injury, and improved pressure-volume (P-V) curves. H2 had a better protective effect than O2. Furthermore, the levels of the pyroptosis-related proteins selective nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteinyl aspartate specific proteinase (caspase)-1 p20, and the N-terminal of gasdermin D (GSDMD-N) were decreased in the H2 group.Conclusion: Lung inflation with 3% hydrogen during the cold ischemia phase inhibited the inflammatory response, oxidative stress, and pyroptosis and improved the function of the graft. Inhibiting reactive oxygen species (ROS) production may be the main mechanism of the antipyroptotic effect of hydrogen.

2021 ◽  
Author(s):  
Yun Ding ◽  
Pengjie Tu ◽  
Yiyong Chen ◽  
Yangyun Huang ◽  
Xiaojie Pan ◽  
...  

Abstract Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia-reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo.Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by tail vein injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with hypoxic reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs.Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by PPARγ pathway; the anti-apoptotic effects might be mediated by the PI3K/Ak pathway.Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI.


2020 ◽  
Vol 76 (10) ◽  
pp. 6459-2020
Author(s):  
JIANTAO ZHANG ◽  
XIAOYAN ZHENG ◽  
LIHONG JIANG ◽  
TAO ZE ◽  
TAO LIU

The purpose of this study was to investigate the protective effects of hydrogen reducing ischemia-reperfusion injury during CO2 pneumoperitoneum on oxidative stress and liver function. Eighteen healthy Beagle dogs were divided into three groups. Dogs in the control group were subjected only to anesthesia for 90 min. The pneumoperitoneum group was subjected to the pressure of CO2 pneumoperitoneum with 12 mmHg intraabdominal pressure for 90 min. The hydrogen group was subjected to the pressure of CO2 pneumoperitoneum with 12 mmHg intra-abdominal pressure for 90 min after a subcutaneous injection of hydrogen gas (0.2 mL/kg) for 10 min. Blood samples were collected before the induction of pneumoperitoneum, as well as 2 h and 6 h after deflation, to evaluate oxidative stress and liver function in serum. Liver tissue samples were taken 6 h after deflation for histopathological examination. In comparison with group P, a milder histopathological change was found in group H2, and the levels of hepatic function and anti-oxidation in group H2 were higher. Hydrogen gas reduced liver ischemia-reperfusion injury due to CO2 pneumoperitoneum by reducing oxidative stress and improving liver function. Hydrogen gas therapy can be considered as a way to reduce liver ischemiareperfusion injury in laparoscopic surgery.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Alessandro Bertani ◽  
Vitale Miceli ◽  
Lavinia De Monte ◽  
Giovanna Occhipinti ◽  
Valeria Pagano ◽  
...  

Primary graft dysfunction (PGD) and ischemia-reperfusion injury (IRI) occur in up to 30% of patients undergoing lung transplantation and may impact on the clinical outcome. Several strategies for the prevention and treatment of PGD have been proposed, but with limited use in clinical practice. In this study, we investigate the potential application of sevoflurane (SEV) preconditioning to mitigate IRI after lung transplantation. The study included two groups of swines (preconditioned and not preconditioned with SEV) undergoing left lung transplantation after 24-hour of cold ischemia. Recipients’ data was collected for 6 hours after reperfusion. Outcome analysis included assessment of ventilatory, hemodynamic, and hemogasanalytic parameters, evaluation of cellularity and cytokines in BAL samples, and histological analysis of tissue samples. Hemogasanalytic, hemodynamic, and respiratory parameters were significantly favorable, and the histological score showed less inflammatory and fibrotic injury in animals receiving SEV treatment. BAL cellular and cytokine profiling showed an anti-inflammatory pattern in animals receiving SEV compared to controls. In a swine model of lung transplantation after prolonged cold ischemia, SEV showed to mitigate the adverse effects of ischemia/reperfusion and to improve animal survival. Given the low cost and easy applicability, the administration of SEV in lung donors may be more extensively explored in clinical practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Andrea Romera ◽  
María Cebollero ◽  
Bárbara Romero-Gómez ◽  
Francisco Carricondo ◽  
Sara Zapatero ◽  
...  

Background. Ischemia-reperfusion injury is one of the most critical phenomena in lung transplantation and causes primary graft failure. Its pathophysiology remains incompletely understood, although the inflammatory response and apoptosis play key roles. Lidocaine has anti-inflammatory properties. The aim of this research is to evaluate the effect of intravenous lidocaine on the inflammatory and apoptotic responses in lung ischemia-reperfusion injury. Methods. We studied the histological and immunohistochemical changes in an experimental model of lung transplantation in pigs. Twelve pigs underwent left pneumonectomy, cranial lobectomy, caudal lobe reimplantation, and 60 minutes of graft reperfusion. Six of the pigs made up the control group, while six other pigs received 1.5 mg/kg of intravenous lidocaine after induction and a 1.5 mg/kg/h intravenous lidocaine infusion during surgery. In addition, six more pigs underwent simulated surgery. Lung biopsies were collected from the left caudal lobe 60 minutes after reperfusion. We conducted a double study on these biopsies and assessed the degree of inflammation, predominant cell type (monocyte-macrophage, lymphocytes, or polymorphous), the degree of congestion, and tissue edema by hematoxylin and eosin stain. We also conducted an immunohistochemical analysis with antibodies against CD68 antigens, monocyte chemoattractant protein-1 (MCP-1), Bcl-2, and caspase-9. Results. The lungs subjected to ischemia-reperfusion injury exhibited a higher degree of inflammatory infiltration. The predominant cell type was monocyte-macrophage cells. Both findings were mitigated by intravenous lidocaine administration. Immunohistochemical detection of anti-CD68 and anti-MCP-1 showed higher infiltration in the lungs subjected to ischemia-reperfusion injury, while intravenous lidocaine decreased the expression. Ischemia-reperfusion induced apoptotic changes and decreased Bcl-2 expression. The group treated with lidocaine showed an increased number of Bcl-2-positive cells. No differences were observed in caspase-9 expression. Conclusions. In our animal model, intravenous lidocaine was associated with an attenuation of the histological markers of lung damage in the early stages of reperfusion.


Sign in / Sign up

Export Citation Format

Share Document