Interleukin-6 Inhibition Reduces Neuronal Injury In A Murine Model of Ventilator-Induced Lung Injury

Author(s):  
Nicklaus A. Sparrow ◽  
Faizan Anwar ◽  
Ambart E Covarrubias ◽  
Padmesh S. Rajput ◽  
Mohammad Harun Rashid ◽  
...  
2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Ozlem U Gurkan ◽  
Meyeon Shin ◽  
Chaoxia He ◽  
Patrice M Becker

2008 ◽  
Vol 108 (2) ◽  
pp. 261-268 ◽  
Author(s):  
Rosanna Vaschetto ◽  
Jan W. Kuiper ◽  
Shyh Ren Chiang ◽  
Jack J. Haitsma ◽  
Jonathan W. Juco ◽  
...  

Background Mechanical ventilation can induce organ injury associated with overwhelming inflammatory responses. Excessive activation of poly(adenosine diphosphate-ribose) polymerase enzyme after massive DNA damage may aggravate inflammatory responses. Therefore, the authors hypothesized that the pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase by PJ-34 would attenuate ventilator-induced lung injury. Methods Anesthetized rats were subjected to intratracheal instillation of lipopolysaccharide at a dose of 6 mg/kg. The animals were then randomly assigned to receive mechanical ventilation at either low tidal volume (6 ml/kg) with 5 cm H2O positive end-expiratory pressure or high tidal volume (15 ml/kg) with zero positive end-expiratory pressure, in the presence and absence of intravenous administration of PJ-34. Results The high-tidal-volume ventilation resulted in an increase in poly(adenosine diphosphate-ribose) polymerase activity in the lung. The treatment with PJ-34 maintained a greater oxygenation and a lower airway plateau pressure than the vehicle control group. This was associated with a decreased level of interleukin 6, active plasminogen activator inhibitor 1 in the lung, attenuated leukocyte lung transmigration, and reduced pulmonary edema and apoptosis. The administration of PJ-34 also decreased the systemic levels of tumor necrosis factor alpha and interleukin 6, and attenuated the degree of apoptosis in the kidney. Conclusion The pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase reduces ventilator-induced lung injury and protects kidney function.


2018 ◽  
Vol 129 (1) ◽  
pp. 163-172 ◽  
Author(s):  
Takeshi Yoshida ◽  
Doreen Engelberts ◽  
Gail Otulakowski ◽  
Bhushan Katira ◽  
Martin Post ◽  
...  

Abstract Background In supine patients with acute respiratory distress syndrome, the lung typically partitions into regions of dorsal atelectasis and ventral aeration (“baby lung”). Positive airway pressure is often used to recruit atelectasis, but often overinflates ventral (already aerated) regions. A novel approach to selective recruitment of dorsal atelectasis is by “continuous negative abdominal pressure.” Methods A randomized laboratory study was performed in anesthetized pigs. Lung injury was induced by surfactant lavage followed by 1 h of injurious mechanical ventilation. Randomization (five pigs in each group) was to positive end-expiratory pressure (PEEP) alone or PEEP with continuous negative abdominal pressure (−5 cm H2O via a plexiglass chamber enclosing hindlimbs, pelvis, and abdomen), followed by 4 h of injurious ventilation (high tidal volume, 20 ml/kg; low expiratory transpulmonary pressure, −3 cm H2O). The level of PEEP at the start was ≈7 (vs. ≈3) cm H2O in the PEEP (vs. PEEP plus continuous negative abdominal pressure) groups. Esophageal pressure, hemodynamics, and electrical impedance tomography were recorded, and injury determined by lung wet/dry weight ratio and interleukin-6 expression. Results All animals survived, but cardiac output was decreased in the PEEP group. Addition of continuous negative abdominal pressure to PEEP resulted in greater oxygenation (Pao2/fractional inspired oxygen 316 ± 134 vs. 80 ± 24 mmHg at 4 h, P = 0.005), compliance (14.2 ± 3.0 vs. 10.3 ± 2.2 ml/cm H2O, P = 0.049), and homogeneity of ventilation, with less pulmonary edema (≈10% less) and interleukin-6 expression (≈30% less). Conclusions Continuous negative abdominal pressure added to PEEP reduces ventilator-induced lung injury in a pig model compared with PEEP alone, despite targeting identical expiratory transpulmonary pressure.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57374 ◽  
Author(s):  
Maria A. Hegeman ◽  
Marije P. Hennus ◽  
Pieter M. Cobelens ◽  
Annemieke Kavelaars ◽  
Nicolaas J. G. Jansen ◽  
...  

2015 ◽  
Vol 3 (S1) ◽  
Author(s):  
E Correger ◽  
J Marcos ◽  
DE Sotelo ◽  
M Beldarrain ◽  
P Stringa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document