Significance of Viscous Dissipation on Fully Developed Natural Convection Flow of a Nanofluid in Vertical Channel with Cross-Diffusion Effects

2016 ◽  
Vol 8 (7) ◽  
pp. 579-588 ◽  
Author(s):  
O. Surender ◽  
CH. Ramreddy
2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Basant K. Jha ◽  
Babatunde Aina

In this research paper, fully developed natural convection flow in a vertical parallel plate's micro-channel in the presence of viscous dissipation is theoretically examined by using a perturbation series method. The effects of velocity slip and temperature jump are taken to consideration. Due to the presence of viscous dissipation, the momentum and energy equations are coupled system of ordinary differential equations. The influences of Knudsen number, fluid wall interaction parameter, and viscous dissipation on the flow formation and heat transfer aspects are demonstrated through graphs and tables. This result indicates that increasing the value of rarefaction parameter decreases the effect of viscous dissipation on the Nusselt number. Furthermore, it is found that the effects of rarefaction parameter as well as buoyancy parameter on temperature and velocity are significantly pronounced in the case of symmetric heating


Author(s):  
Martin Thebault ◽  
Stéphanie Giroux-Julien ◽  
Victoria Timchenko ◽  
Christophe Ménézo ◽  
John Reizes

2007 ◽  
Vol 12 (4) ◽  
pp. 447-459 ◽  
Author(s):  
Md. M. Alam ◽  
M. A. Alim ◽  
Md. M. K. Chowdhury

In this paper, the viscous dissipation effects on magnetohydrodynamic natural convection flow over a sphere in the presence of heat generation have been described. The governing boundary layer equations are first transformed into a nondimensional form and the resulting nonlinear system of partial differential equations are then solved numerically using finite-difference method together with Keller-box scheme. The numerical results of the surface shear stress in terms of skin friction coefficient and the rate of heat transfer in terms of local Nusselt number, velocity as well as temperature profiles are shown graphically and tabular form for a selection of parameters set consisting of heat generation parameter Q, magnetic parameter M, viscous dissipation parameter N and the Prandlt number Pr.


Sign in / Sign up

Export Citation Format

Share Document