Technique Project and Experimental Study of Viscoelastic Magnetic Abrasive Finishing

2012 ◽  
Vol 12 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Wenhui Li ◽  
Xiuhong Li
2007 ◽  
Vol 359-360 ◽  
pp. 300-304
Author(s):  
Shu Ren Zhang ◽  
Li Feng Yang ◽  
Guo Xiang Wu

Magnetic Abrasive Finishing (MAF) is relatively a new finishing technique which employs the magnetic force for finishing. In this paper, the influence of the magnetic flux density on the finishing pressure and the finishing efficiency during finishing is analyzed. With the cylindrical magnetic finishing apparatus developed by the author, a series of experiments on finishing the cylindrical surfaces of nonferromagnetic materials and ferromagnetic materials are carried out. To solve the problems of low finishing efficiency and abrasive particles escaping easily because of lack of finishing pressure during finishing nonferromagnetic materials, a new method of increasing the finishing pressure by using the “pressure-increasing bag” in the finishing system is put forward. A lot of comparative experiments on finishing nonferromagnetic materials with the “pressure-increasing bag” and without the “pressure-increasing bag” are performed. Under the same experimental conditions, the amount of diameter-reduction d is increased from 1μm to 1.88μm and the surface roughness is improved from Ra0.315μm to Ra0.250μm by using the “pressure-increasing bag”. The results show that the finishing pressure is increased obviously and the MAF efficiency of finishing nonferromagnetic materials is improved dramatically by using the “pressure-increasing bag”.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.


2020 ◽  
Vol 62 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Kandhasamy Suganeswaran ◽  
Rathinasamy Parameshwaran ◽  
Thangamuthu Mohanraj ◽  
Balasubramaniyam Meenakshipriya

Sign in / Sign up

Export Citation Format

Share Document