Experimental Study on Increasing Magnetic Abrasive Finishing Efficiency of Finishing Nonferromagnetic Materials

2007 ◽  
Vol 359-360 ◽  
pp. 300-304
Author(s):  
Shu Ren Zhang ◽  
Li Feng Yang ◽  
Guo Xiang Wu

Magnetic Abrasive Finishing (MAF) is relatively a new finishing technique which employs the magnetic force for finishing. In this paper, the influence of the magnetic flux density on the finishing pressure and the finishing efficiency during finishing is analyzed. With the cylindrical magnetic finishing apparatus developed by the author, a series of experiments on finishing the cylindrical surfaces of nonferromagnetic materials and ferromagnetic materials are carried out. To solve the problems of low finishing efficiency and abrasive particles escaping easily because of lack of finishing pressure during finishing nonferromagnetic materials, a new method of increasing the finishing pressure by using the “pressure-increasing bag” in the finishing system is put forward. A lot of comparative experiments on finishing nonferromagnetic materials with the “pressure-increasing bag” and without the “pressure-increasing bag” are performed. Under the same experimental conditions, the amount of diameter-reduction d is increased from 1μm to 1.88μm and the surface roughness is improved from Ra0.315μm to Ra0.250μm by using the “pressure-increasing bag”. The results show that the finishing pressure is increased obviously and the MAF efficiency of finishing nonferromagnetic materials is improved dramatically by using the “pressure-increasing bag”.

2006 ◽  
Vol 304-305 ◽  
pp. 384-388
Author(s):  
Shu Ren Zhang ◽  
W.N. Liu

Magnetic Abrasive Finishing (MAF) is relatively a new finishing technique that employs the magnetic force for finishing. In the paper, finishing mechanism of MAF is studied and four self-sharpening modes of abrasive particles are put forward. With the cylindrical magnetic abrasive apparatus designed and made by the author, a series of experiments on finishing the cylindrical surfaces of nonferromagnetic materials and ferromagnetic materials are carried out. The influence of technical parameters (finishing speed, feed speed, finishing time and so on) on finishing performance is analyzed. Choosing the optimized technical parameters, , the surface roughness of ferromagnetic materials changes from Ra 0.825µm to Ra 0.045µm after the 12-minute finishing experiment; the surface roughness of nonferromagnetic materials changes from Ra 0.434µm to Ra 0.096µm after the 20-minute finishing experiment.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 78
Author(s):  
Baijun Xing ◽  
Yanhua Zou

The magnetic abrasive finishing combined with electrolytic (EMAF) process was proposed to improve the finishing efficiency of the traditional magnetic abrasive finishing (MAF) process. Since the EMAF process contains electrolysis reactions, the machining mechanism of processing different metal is different. In this paper, a series of experiments were conducted to explore the feasibility of using the compound processing tool to finish aluminum alloy A5052, and to preliminary explore the machining mechanism. Surface roughness and material removal are used to evaluate the finishing effect and the finishing efficiency, respectively. The EMAF processing current curve is used to evaluate and analyze the EMAF process. The feasibility of the EMAF processing is proved by the analysis of simulations and the experimental results. Finally, through a series of exploration experiments and parameter optimization experiments, the main conclusions are as follows: (1) Compared with the traditional MAF process, when finishing the surface of aluminum alloy A5052 by the same compound processing tool and at the same experimental conditions (except the electrolysis conditions), the EMAF process, which includes electrolysis reactions, can achieve higher finishing efficiency. (2) In this study, when the working gap is 1 mm and the concentration of NaNO3 solution is 15%, the recommended processing voltage is about 3.4 V.


2012 ◽  
Vol 585 ◽  
pp. 517-521
Author(s):  
Mahadev Gouda Patil ◽  
Kamlesh Chandra ◽  
P.S. Misra

The finishing characteristics of mechanically alloyed magnetic abrasives used in cylindrical magnetic abrasive finishing (MAF) are presented in this study. Mechanical alloying is a solid state powder processing technique, where the powder particles are subjected to impact by the balls in a high energy ball mill or attritor at room temperature. After the process, fine magnetic abrasives are obtained in which the abrasive particles are attached to the base metal matrix without any bonding material. The magnetic particle used in the magnetic abrasive production is iron powder and the abrasive is aluminium oxide. Magnetic abrasives play the role of cutting tools in MAF, which is emerging as an important non-conventional machining process. The experiments performed on stainless steel tubes examine the effects of varying the quantity of magnetic abrasives, magnetic flux density, speed of rotation of the workpiece and amount of lubricant. The surface roughness measurements demonstrate the effects of the abrasive behaviour on the surface modification. The surface roughness was analysed in terms of percentage improvement in surface finish (PISF). The obtained maximum PISF was 40 % and the minimum surface roughness was 0.63 μm Ra.


2005 ◽  
Vol 04 (02) ◽  
pp. 131-150 ◽  
Author(s):  
S. C. JAYSWAL ◽  
V. K. JAIN ◽  
P. M. DIXIT

Magnetic Abrasive Finishing (MAF) is one of the non-conventional finishing processes, which produces a high level of surface quality and is primarily controlled by magnetic field. In MAF, workpiece is kept between the two poles (N and S) of a magnet. The working gap between the workpiece and the magnet is filled with magnetic abrasive particles. A magnetic abrasive flexible brush (MAFB) is formed, acting as a multipoint cutting tool, due to the effect of magnetic field in the working gap. This paper deals with theoretical investigations of the plane MAF process to know the effect of the process parameters on the surface quality produced. The magnetic field is simulated using finite element model of the process. The magnetic field is also measured experimentally to validate the theoretical results. A series of numerical experiments are performed using the finite element and surface roughness models of the process to study the effect of flux density, height of working gap, size of magnetic abrasive particles and slots (size and location) in the magnetic pole on the surface quality. Based on the results, it is concluded that surface roughness value (R max ) of the workpiece decreases with increase in flux density and size of magnetic abrasive particles. Surface roughness value (R max ) decreases with decrease in working gap. R max value also decreases when the magnet has a slot as compared to the magnet having no slot. Present study would help in understanding the effect of the various parameters on surface roughness value without doing a number of real-life experiments.


2019 ◽  
Vol 3 (2) ◽  
pp. 29 ◽  
Author(s):  
Mohammad Uddin ◽  
Vincent Santos ◽  
Romeo Marian

This paper investigates the underlying interplay between the key process parameters of magnetic abrasive finishing (MAF) in improving surface quality. The five process parameters considered were the working gap, rotational speed, feed rate, abrasive amount, and abrasive mesh when MAFed independently with two abrasive particles—SiC and Al2O3. A series of experiments were conducted with an in-house built MAF tool. Based on the main effect results, a model predicting roughness reduction was developed. Results show that surface quality improvement and the underlying dominant process parameters seem unique to the abrasive type used. When MAFed with SiC, the abrasive quantity and rotational speed influence the most. On the other hand, when MAFed with Al2O3, the trend is different to SiC, i.e., the abrasive mesh size and the working gap are dominant. The prediction model was well validated by independent experiments, indicating its accuracy in estimating and optimizing the process outcome. MAF is a simple process with a complex interplay between parameters. This is very crucial when abrasive type, size, and amount to be used are concerned, which warrants a deeper investigation in terms of underlying dynamics, interactions, and the deformation of abrasive, magnetic, and workpiece materials.


2021 ◽  
Vol 22 ◽  
pp. 15
Author(s):  
Farshid Ahmadi ◽  
Hassan Beiramlou ◽  
Pouria Yazdi

Surface characteristics play a very important role in medical implants and among surface features, surface roughness is very effective in some medical applications. Among the various methods used to improve surface roughness, magnetic abrasive finishing (MAF) process has been widely used in medical engineering. In this study, the effect of abrasive particle morphology along with four other process parameters, including type of work metal, finishing time, speed of finishing operation, and the type of abrasive powder were experimentally evaluated. Full factorial technique was used for design of experiment. Three commonly used metals in orthopedic implants i.e., Ti-6Al-4V alloy, AZ31 alloy and austenitic stainless-steel 316LVM, were selected for this study. Also, two types of magnetic abrasive particles with different shapes (spherical and rod-shaped) were considered in the experiments. The results of the experiments indicated that the morphology of the abrasive particles and the finishing time had the greatest effect on surface roughness and using rod-shaped abrasive particles resulted in better surface quality comparing to the spherical particles. Besides, the surface quality of steel 316LVM after MAF was the best among the other examined metals. Interaction plots of ANOVA also showed that interactions of material with morphology of abrasive particles, and material with machining time were found to be reasonably significant.


2021 ◽  
Author(s):  
abbas moghanizadeh

Abstract The objective of this research is to present a novel approach in magnetic abrasive finishing to improve its potential for creating different finishing patterns in free-form surface using no special fixtures or tool machines to minimize the complexity of the process. The key point of this idea is that magnetic abrasive particles can move in especial patterns by transfer magnetic fields (similar a magnetic train moving on a magnetic rail) and create the desired polishing patterns on the surface simultaneously. The coils are placed under a thin plate, then a flexible magnetic path is created by a special arrangement of magnetic coils, after that, the coils are turned on and off in turn, and the magnetic abrasive particles move in the created path and abrasive the surface. The continuous movement of magnetic abrasive particles under the magnetic field will lead to abrasive the surface of thin sheets. The tests were performed on copper sheets with a thickness of 1 mm. Experimental parameters include electric current (0.25, 0.5, and 0.75A), speed of turning on and off of the coils (speed of magnetic abrasive particle movement) (20, 30, and 40 mm/s), and process time (1, 2, and 3 hours). The experiments were performed on an L-shaped and free-form sheets. The results show that using a transmission magnetic field in the MAF (TMAF) makes it easy to create different surface roughness patterns in different directions simultaneously. While in one part of the L shape the electric current is 0.25A, the surface roughness of is around 0.9 µm, in the other part, where the electric current is 0.75A, the surface roughness of is around 0.55 µm. Meanwhile, TMAF makes it possible to finish a free-form surface with no special fixtures. Moreover, there is a direct relationship between the change in the surface roughness and the electric current and process time.


2011 ◽  
Vol 675-677 ◽  
pp. 663-666
Author(s):  
Yan Chen ◽  
Akira Shimamoto ◽  
X. Gao ◽  
M.M. Zhang

In order to enhance grinding efficiency of the magnetic abrasive finishing (MAF) method, we usually use the sinter method or the cementation method to mix the magnetic particles and abrasive particles together. However, the cost is high, and the variety is incomplete. Therefore, with the ferromagnetism to iron particles, the alumina particles and the lipin three kind of material simple mixture participate in the magnetic abrasive finishing which directly polishes, already obtained the good effect through the experiment. This paper analyses and explains the characteristic of the friction coefficient and the friction force on magnetic abrasive finishing according as account and experiment data.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 194
Author(s):  
Michał Marczak ◽  
Józef Zawora

In this article, we present a numerical model of a magnetic abrasive finishing station, which was analyzed using the finite element method (FEM). The obtained results were compared with the real values measured on an experimental station of our own design. The prepared station had the option of adjusting the magnetic flux density inside the machining gap, the width of which could be changed from 10 to 30 mm. The maximum value of the magnetic flux density inside the air gap was 0.8 T. The real distribution of magnetic flux density in the finishing area was also analyzed. A design of experiment was carried out with the following variables: abrasive grain concentration, width of the machining gap, and process duration. The results are presented in the form of regression equations and characteristics for selected roughness parameters.


Sign in / Sign up

Export Citation Format

Share Document