Dynamic Efficiency Analysis of Solar Energy and Bio-Mass Energy Utilization for Wetland Resources

2012 ◽  
Vol 11 (1) ◽  
pp. 660-663
Author(s):  
Jun Lu ◽  
Kuichuan Sheng ◽  
Deyun Wei
Author(s):  
Cheng Tian ◽  
Chengcheng Li ◽  
Delun Chen ◽  
Yifan Li ◽  
LEI XING ◽  
...  

Designing low-cost and efficient evaporation system to maximize solar energy utilization is of great importance for the emerging solar water purification technologies. Herein, we demonstrate a universal sandwich hydrogel by...


Author(s):  
Stephanie Drozek ◽  
Christopher Damm ◽  
Ryan Enot ◽  
Andrew Hjortland ◽  
Brandon Jackson ◽  
...  

The purpose of this paper is to describe the implementation of a laboratory-scale solar thermal system for the Renewable Energy Systems Laboratory at the Milwaukee School of Engineering (MSOE). The system development began as a student senior design project where students designed and fabricated a laboratory-scale solar thermal system to complement an existing commercial solar energy system on campus. The solar thermal system is designed specifically for educating engineers. This laboratory equipment, including a solar light simulator, allows for variation of operating parameters to investigate their impact on system performance. The equipment will be utilized in two courses: Applied Thermodynamics, and Renewable Energy Utilization. During the solar thermal laboratories performed in these courses, students conduct experiments based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) 93-2010 standard for testing and performance characterization of solar thermal systems. Their measurements are then used to quantify energy output, efficiency and losses of the system and subsystem components.


2017 ◽  
Vol 43 (9) ◽  
pp. 6822-6830 ◽  
Author(s):  
Wutao Mao ◽  
Zhengdao Li ◽  
Keyan Bao ◽  
Kaijun Zhang ◽  
Weibo Wang ◽  
...  

2017 ◽  
Vol 4 (4) ◽  
pp. 578-580 ◽  
Author(s):  
Xiaoyong Lai

A dually ordered macro-mesoporous TiO2–rGO composite with tunable light response was developed for efficient solar energy utilization.


Solar Energy ◽  
2017 ◽  
Vol 148 ◽  
pp. 98-109 ◽  
Author(s):  
M.H. Mohamed ◽  
G.E. William ◽  
M. Fatouh

2012 ◽  
Vol 608-609 ◽  
pp. 65-69
Author(s):  
Xiao Fan Yang ◽  
Zhi Long Xu ◽  
Chao Li ◽  
Zhong Ming Huang

As the development trend of solar energy, which is a green way of energy utilization, photovoltaic power generation has been a research hotspot of solar energy utilization technologies. Using the concentrating and tracking technology to increase the illumination intensity, and obtain more electrical energy, that will reduce the cost of the photovoltaic power generation system sharply. A kind of steric and multilevel concentrator for photovoltaic generation is introduced in this paper, whose concentration ratio is 3. The operating factor of plane mirrors and performance price ratio of the system is increased for optimizing the condensation parameters and structure of the concentrator.


Sign in / Sign up

Export Citation Format

Share Document