Intelligent Computational Nanotechnology: The Role of Computational Intelligence in the Development of Nanoscience and Nanotechnology

2014 ◽  
Vol 11 (4) ◽  
pp. 928-944 ◽  
Author(s):  
Omar Paranaiba Vilela Neto
Author(s):  
Salman H. Khan ◽  
Arsalan H. Khan ◽  
Zeashan H. Khan

The role of computational intelligence techniques in applied sciences and engineering is becoming popular today. It is essential because the autonomous engineering applications require intelligent decision in real time in order to achieve the desired goal. This chapter discusses some of the approaches to demonstrate various applications of computational intelligence in dependable networked control systems and a case study of teleoperation over wireless network. The results have shown that computational intelligence algorithms can be successfully implemented on an embedded application to offer an improved online performance. The different approaches have been compared and could be chosen as per application requirements.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Sebastian Polak ◽  
Barbara Wiśniowska ◽  
Aleksander Mendyk ◽  
Adam Pacławski ◽  
Jakub Szlęk

Human heart electrophysiology is complex biological phenomenon, which is indirectly assessed by the measured ECG signal. ECG trace is further analyzed to derive interpretable surrogates including QT interval, QRS complex, PR interval, and T wave morphology. QT interval and its modification are the most commonly used surrogates of the drug triggered arrhythmia, but it is known that the QT interval itself is determined by other nondrug related parameters, physiological and pathological. In the current study, we used the computational intelligence algorithms to analyze correlations between various simulated physiological parameters and QT interval. Terfenadine given concomitantly with 8 enzymatic inhibitors was used as an example. The equation developed with the use of genetic programming technique leads to general reasoning about the changes in the prolonged QT. For small changes of the QT interval, the drug-related IKr and ICa currents inhibition potentials have major impact. The physiological parameters such as body surface area, potassium, sodium, and calcium ions concentrations are negligible. The influence of the physiological variables increases gradually with the more pronounced changes in QT. As the significant QT prolongation is associated with the drugs triggered arrhythmia risk, analysis of the role of physiological parameters influencing ECG seems to be advisable.


2012 ◽  
Vol 6 (2) ◽  
pp. 307-343 ◽  
Author(s):  
Pietro Parodi

AbstractThis paper argues that most of the problems that actuaries have to deal with in the context of non-life insurance can be usefully cast in the framework of computational intelligence (a.k.a. artificial intelligence), the discipline that studies the design of agents which exhibit intelligent behaviour. Finding an adequate framework for actuarial problems has more than a simply theoretical interest: it also allows a knowledge transfer from the computational intelligence discipline to general insurance, wherever techniques have been developed for problems which are common to both contexts. This has already happened in the past (neural networks, clustering, data mining have all found applications to general insurance) but not systematically, with the result that many useful computational intelligence techniques such as sparsity-based regularisation schemes (a technique for feature selection) are virtually unknown to actuaries.In this first of two papers, we will explore the role of statistical learning in actuarial modelling. We will show that risk costing, which is at the core of pricing, reserving and capital modelling, can be described as a supervised learning problem. Many activities involved in exploratory analysis, such as data mining or feature construction, can be described as unsupervised learning. A comparison of different computational intelligence methods will be carried out, and practical insurance applications (rating factor selection, IBNER analysis) will also be presented.


Sign in / Sign up

Export Citation Format

Share Document