scholarly journals Overlapped k-Space Acquisition and Reconstruction Technique for Motion Artifact Reduction in Magnetic Resonance Imaging

2011 ◽  
Vol 1 (1) ◽  
pp. 61-65
Author(s):  
Yasser M. Kadah
Author(s):  
Penta Anil Kumar ◽  
R. Gunasundari ◽  
R. Aarthi

Background: Magnetic Resonance Imaging (MRI) plays an important role in the field of medical diagnostic imaging as it poses non-invasive acquisition and high soft-tissue contrast. However, the huge time is needed for the MRI scanning process that results in motion artifacts, degrades image quality, misinterpretation of data, and may cause uncomfortable to the patient. Thus, the main goal of MRI research is to accelerate data acquisition processing without affecting the quality of the image. Introduction: This paper presents a survey based on distinct conventional MRI reconstruction methodologies. In addition, a novel MRI reconstruction strategy is proposed based on weighted Compressive Sensing (CS), Penalty-aided minimization function, and Meta-heuristic optimization technique. Methods: An illustrative analysis is done concerning adapted methods, datasets used, execution tools, performance measures, and values of evaluation metrics. Moreover, the issues of existing methods and the research gaps considering conventional MRI reconstruction schemes are elaborated to obtain improved contribution for devising significant MRI reconstruction techniques. Results: The proposed method will reduce conventional aliasing artifacts problems, may attain lower Mean Square Error (MSE), higher Peak Signal-to-Noise Ratio (PSNR), and Structural SIMilarity (SSIM) index. Conclusion: The issues of existing methods and the research gaps considering conventional MRI reconstruction schemes are elaborated to devising an improved significant MRI reconstruction technique.


2021 ◽  
pp. 028418512110290
Author(s):  
Georg Osterhoff ◽  
Florian A Huber ◽  
Laura C Graf ◽  
Ferdinand Erdlen ◽  
Hans-Christoph Pape ◽  
...  

Background Carbon-reinforced PEEK (C-FRP) implants are non-magnetic and have increasingly been used for the fixation of spinal instabilities. Purpose To compare the effect of different metal artifact reduction (MAR) techniques in magnetic resonance imaging (MRI) on titanium and C-FRP spinal implants. Material and Methods Rod-pedicle screw constructs were mounted on ovine cadaver spine specimens and instrumented with either eight titanium pedicle screws or pedicle screws made of C-FRP and marked with an ultrathin titanium shell. MR scans were performed of each configuration on a 3-T scanner. MR sequences included transaxial conventional T1-weighted turbo spin echo (TSE) sequences, T2-weighted TSE, and short-tau inversion recovery (STIR) sequences and two different MAR-techniques: high-bandwidth (HB) and view-angle-tilting (VAT) with slice encoding for metal artifact correction (SEMAC). Metal artifact degree was assessed by qualitative and quantitative measures. Results There was a much stronger effect on artifact reduction with using C-FRP implants compared to using specific MRI MAR-techniques (screw shank: P < 0.001; screw tulip: P < 0.001; rod: P < 0.001). VAT-SEMAC sequences were able to reduce screw-related signal loss artifacts in constructs with titanium screws to a certain degree. Constructs with C-FRP screws showed less artifact-related implant diameter amplification when compared to constructs with titanium screws ( P < 0.001). Conclusion Constructs with C-FRP screws are associated with significantly less artifacts compared to constructs with titanium screws including dedicated MAR techniques. Artifact-reducing sequences are able to reduce implant-related artifacts. This effect is stronger in constructs with titanium screws than in constructs with C-FRP screws.


2019 ◽  
Vol 54 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Pia M. Jungmann ◽  
Susanne Bensler ◽  
Patrick Zingg ◽  
Benjamin Fritz ◽  
Christian W. Pfirrmann ◽  
...  

NeuroImage ◽  
2002 ◽  
Vol 16 (1) ◽  
pp. 89-92 ◽  
Author(s):  
Jonathan D. Blumenthal ◽  
Alex Zijdenbos ◽  
Elizabeth Molloy ◽  
Jay N. Giedd

2016 ◽  
Vol 49 (3) ◽  
pp. 158-164
Author(s):  
Tiago da Silva Jornada ◽  
Camila Hitomi Murata ◽  
Regina Bitelli Medeiros

Abstract Objective: To study the influence that the scan percentage tool used in partial k-space acquisition has on the quality of images obtained with magnetic resonance imaging equipment. Materials and Methods: A Philips 1.5 T magnetic resonance imaging scanner was used in order to obtain phantom images for quality control tests and images of the knee of an adult male. Results: There were no significant variations in the uniformity and signal-to-noise ratios with the phantom images. However, analysis of the high-contrast spatial resolution revealed significant degradation when scan percentages of 70% and 85% were used in the acquisition of T1- and T2-weighted images, respectively. There was significant degradation when a scan percentage of 25% was used in T1- and T2-weighted in vivo images (p ≤ 0.01 for both). Conclusion: The use of tools that limit the k-space is not recommended without knowledge of their effect on image quality.


Sign in / Sign up

Export Citation Format

Share Document