Autothermal Reforming of Propane Over Ni Catalysts Supported on a Variety of Perovskites

2007 ◽  
Vol 7 (11) ◽  
pp. 4013-4016 ◽  
Author(s):  
SeungSoo Lim ◽  
DongJu Moon ◽  
JongHo Kim ◽  
YoungChul Kim ◽  
NamCook Park ◽  
...  

Autothermal reforming of propane for hydrogen over Ni catalysts supported on a variety of perovskites was performed in an atmospheric flow reactor. Perovskite is known for its higher thermal stability and oxygen storage capacity, but catalytic activity of itself is low. A sites of the ABO3 structured perovskites were occupied by La while B sites by one of Fe, Co, Ni, and Al by citrate method. The composition of the reactant mixture was H2O/C/O2 = 8.96/1.0/1.1. The changes in the states of the catalysts after reaction were analyzed by XRD, TPD, and TGA. Ni/LaAlO3 catalyst maintained the perovskite structure after reaction. It showed higher hydrogen yield and thermal stability compared to those of the catalysts with Fe, Co, or Ni in B sites. Catalysts prepared by deposition-precipitation (DP) method showed higher activity than those prepared by impregnation method, presumably due to the smaller sizes of the NiO crystal particles.

2014 ◽  
Vol 575 ◽  
pp. 97-102 ◽  
Author(s):  
M. Nazri Abu Shah ◽  
S. Hanim Md Nor ◽  
Kamariah Noor Ismail ◽  
Abdul Hadi

An overview of modification of cerium oxide, CeO2which is employed in the three-way catalyst (TWCs) is presented in this article. The modifications of cerium oxide, CeO2incorporated with the metal oxides for the improvement of thermal stability, microstructure and oxygen storage capacity (OSC) are discussed. In view of that, the types of metal oxide are grouped into transition metals, rare earth metals, and alkaline metals and the effect of each group into cerium oxide, CeO2are elaborated.


2015 ◽  
Vol 3 (35) ◽  
pp. 18074-18082 ◽  
Author(s):  
Zhiyun Zhang ◽  
Jing Li ◽  
Wei Gao ◽  
Yuanyuan Ma ◽  
Yongquan Qu

Pt/porous nanorods of CeO2 with a large surface area, a high oxygen storage capacity and a remarkable thermal stability exhibit high catalytic activity and stability for the carbon dioxide reforming of methane reaction at 800 °C.


Sign in / Sign up

Export Citation Format

Share Document