Diffraction Effects in the Propagation of Radiation in Polarizable Layers

2008 ◽  
Vol 8 (2) ◽  
pp. 595-601
Author(s):  
Valerio Dallacasa

The very low transmission of light through holes smaller than the wavelength has been found to be enhanced for subwavelength apertures in metallic surfaces with periodic corrugations. This effect has been attributed to the interaction of light with surface plasmons. Similar effects obtained subsequently for non-metallic surfaces have been attributed to evanescent waves on the surface produced by the diffracted Bloch waves from different points in the array. We present an exact solution of Maxwell's equations in the discrete dipole approximation (DDA) for a periodic array of polarizable point dipoles in a layer. Metallic as well as non metallic layers are described. When the wavelength is smaller than the lattice period there is a Bragg's scattered wave, while for subwavelength conditions an evanescent wave on the surface appears. The transmission/reflection coefficients are found to oscillate as a function of frequency, with resonances occurring in a broad range of frequencies depending on the polarizability, at which the evanescent field is enhanced. A detailed study is presented for nanostructured arrays. We find that this model agrees with features observed in experiments through hole arrays supporting the role played by diffraction during light transmission through such arrays without invoking surface plasmons and providing a base to analyze more complex geometries.

Author(s):  
Ahmed hussein Duhis ◽  
Mohanad Aljanabi

The possibility to limit and manipulate photons at nanometer scales attracted a lot of interest for exciting applications from subwavelength in laser, biosensors, biomedical and optoelectronics devices, the sensor optical properties, however; are complex due to two resonances through propagating and localized surface plasmons. The optical properties of surface plasmons (SPs) at the resonant wavelength is depending on the geometrical nanostructure of materials. In this article, we used different geometry of nanoholes array, 4 and 9 nanoholes array in a metallic film gold nanoparticle with different thickness (20,50,100) nm on SiO2 substrate with refractive index 1.46, we designed two different geometries; 4- holes: hole radius r1=200 nm, period p1=600 nm; and 9- holes: r2=100 nm, period p2=300 nm. Transmission and reflection spectrum have been calculated and simulated by FDTD Lumerical program. From results are observed the effect of thickness is interesting, transmission is increased at (t=20nm) for two arrays. Furthermore, the number of hole and its area has an influence on optical transmission and other parameters (E, H, Ref) which are characteristics of design of metallic nanostructure. We can see that there is a peak value of the wavelength at 519 nm approximately to 73% strong light transmission with 4-NHA in the other hand wavelength of 519 nm transmission is 45% with 9-NHA. strong light transmission is hopeful for many applications (biomedical devices, nanoantennas and laser optical fiber).


2007 ◽  
Vol 90 (25) ◽  
pp. 251112 ◽  
Author(s):  
Tao Li ◽  
Jia-Qi Li ◽  
Fu-Ming Wang ◽  
Qian-Jin Wang ◽  
Hui Liu ◽  
...  

2010 ◽  
Vol 18 (3) ◽  
pp. 2528 ◽  
Author(s):  
A. Roberts

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yoshiki Osaka ◽  
Nobuhiko Yokoshi ◽  
Hajime Ishihara

We theoretically investigate optical absorption of molecules embedded nearby metallic antennas by using discrete dipole approximation method. It is found that the spectral peak of the absorption is shifted due to the radiation-induced correlation between the molecules. The most distinguishing feature of our work is to show that the shift is largely enhanced even when the individual molecules couple with localized surface plasmons near the different antennas. Specifically, we first consider the case that two sets of dimeric gold blocks with a spacing of a few nanometers are arranged and reveal that the intensity and spectral peak of the optical absorption strongly depend on the position of the molecules. In addition, when the dimeric blocks and the molecules are periodically arranged, the peak shift is found to increase up to ~1.2 meV (300 GHz). Because the radiation-induced correlation is essential for collective photon emission, our result implies the possibility of plasmon-assisted superfluorescence in designed antenna-molecule complex systems.


Sign in / Sign up

Export Citation Format

Share Document