sio2 substrate
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 51)

H-INDEX

19
(FIVE YEARS 3)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Marilou Cadatal-Raduban ◽  
Tomoki Kato ◽  
Yusuke Horiuchi ◽  
Jiří Olejníček ◽  
Michal Kohout ◽  
...  

Vacuum ultraviolet radiation (VUV, from 100 nm to 200 nm wavelength) is indispensable in many applications, but its detection is still challenging. We report the development of a VUV photoconductive detector, based on titanium dioxide (TiO2) nanoparticle thin films. The effect of crystallinity, optical quality, and crystallite size due to film thickness (80 nm, 500 nm, 1000 nm) and type of substrate (silicon Si, quartz SiO2, soda lime glass SLG) was investigated to explore ways of enhancing the photoconductivity of the detector. The TiO2 film deposited on SiO2 substrate with a film thickness of 80 nm exhibited the best photoconductivity, with a photocurrent of 5.35 milli-Amperes and a photosensitivity of 99.99% for a bias voltage of 70 V. The wavelength response of the detector can be adjusted by changing the thickness of the film as the cut-off shifts to a longer wavelength, as the film becomes thicker. The response time of the TiO2 detector is about 5.8 μs and is comparable to the 5.4 μs response time of a diamond UV sensor. The development of the TiO2 nanoparticle thin film detector is expected to contribute to the enhancement of the use of VUV radiation in an increasing number of important technological and scientific applications.


2021 ◽  
Vol 4 (04) ◽  
pp. 29-40
Author(s):  
Gisele De Souza ◽  
Claudio Carvalho ◽  
Rafael Zadorosny

The production cost is one of the issues for some complex ceramics applications, like the superconducting oxides. The main properties of such materials, i.e., zero electrical resistivity and perfect diamagnetism, make them attractive for several applications, including energy storage. Thus, in this work, we focus on the production and structural characterization of BSCCO superconducting films using a domestic inkjet printer. The precursor solution was prepared following Pechini's method, and it was used, such as the ink. Then, an E-shape film was printed over a SiO2 substrate. The results show that the sample produced with 12 depositions presented a superconducting transition at 81 K and a critical current density of 9.68 A/cm2 at 78 K.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 514
Author(s):  
Tung Pham ◽  
Ying Chen ◽  
Jhoann Lopez ◽  
Mei Yang ◽  
Thien-Toan Tran ◽  
...  

Molybdenum disulfide (MoS2) features a band gap of 1.3 eV (indirect) to 1.9 eV (direct). This tunable band gap renders MoS2 a suitable conducting channel for field-effect transistors (FETs). In addition, the highly sensitive surface potential in MoS2 layers allows the feasibility of FET applications in biosensors, where direct immobilization and detection of biological molecules are conducted in wet conditions. In this work, we report, for the first time, the degradation of chemical vapor deposition (CVD) grown MoS2 FET-based sensors in the presence of phosphate buffer and water, which caused false positive response in detection. We conclude the degradation was originated by physical delamination of MoS2 thin films from the SiO2 substrate. The problem was alleviated by coating the sensors with a 30 nm thick aluminum oxide (Al2O3) layer using atomic layer deposition technique (ALD). This passive oxide thin film not only acted as a protecting layer against the device degradation but also induced a strong n-doping onto MoS2, which permitted a facile method of detection in MoS2 FET-based sensors using a low-power mode chemiresistive I-V measurement at zero gate voltage (Vgate = 0 V). Additionally, the oxide layer provided available sites for facile functionalization with bioreceptors. As immunoreaction plays a key role in clinical diagnosis and environmental analysis, our work presented a promising application using such enhanced Al2O3-coated MoS2 chemiresistive biosensors for detection of HIgG with high sensitivity and selectivity. The biosensor was successfully applied to detect HIgG in artificial urine, a complex matrix containing organics and salts.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 572
Author(s):  
Xinyue Zhang ◽  
Xuelin Zhai ◽  
Can Tao ◽  
Ning Wang ◽  
Ying Zhong ◽  
...  

The spontaneous-emission enhancement effect of a single metallic rectangular-aperture optical nanoantenna on a SiO2 substrate was investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons (SPPs) in the aperture, an intuitive and comprehensive SPP model was established. The model can comprehensively predict the total spontaneous emission rate, the radiative emission rate and the angular distribution of the far-field emission of a point source in the aperture. Two phase-matching conditions are derived from the model for predicting the resonance and show that the spontaneous-emission enhancement by the antenna comes from the Fabry–Perot resonance of the SPP in the aperture. In addition, when scanning the position of the point source and the aperture length, the SPP model does not need to repeatedly solve the Maxwell’s equations, which shows a superior computational efficiency compared to the full-wave numerical method.


Author(s):  
Linan Huang ◽  
Jun Zhong ◽  
Weidong Sheng ◽  
Aiping Zhou

Abstract Electronic structure of phosphorene nanoflakes which consist of hundreds of phosphorus atoms are studied in the framework of unrestricted Hartree-Fock approach. On the base of Pariser-Parr-Pople model for electron-electron interactions, a simplified Bethe-Salpeter formalism is established for the calculation of excitation states of the system. Taking into account the electron-hole interaction in various dielectric environments, the optical gap of a triangular phosphorene nanoflake is shown to increase as the screening effect becomes stronger while its graphene counterpart exhibits just the opposite dependence. After confirming an exponential dependence of the optical gap on the effective dielectric constant, the quasiparticle and optical gaps are also found to obey an exponential scaling rule against the total number of atoms in the nanoflakes, respectively. By extrapolating the dependence on the size of the system, one is able to estimate the exciton binding energy of a monolayer phosphorene sheet on a SiO2 substrate to be 0.894 eV. The result is found to agree well with the previous experimental result of $ 0.9 eV.


2021 ◽  
Vol 7 (4) ◽  
pp. 79
Author(s):  
Abdul Hoque ◽  
Ahamed Ullah ◽  
Beth S. Guiton ◽  
Noe T. Alvarez

Carbon nanotubes (CNTs) offer unique properties that have the potential to address multiple issues in industry and material sciences. Although many synthesis methods have been developed, it remains difficult to control CNT characteristics. Here, with the goal of achieving such control, we report a bottom-up process for CNT synthesis in which monolayers of premade aluminum oxide (Al2O3) and iron oxide (Fe3O4) nanoparticles were anchored on a flat silicon oxide (SiO2) substrate. The nanoparticle dispersion and monolayer assembly of the oleic-acid-stabilized Al2O3 nanoparticles were achieved using 11-phosphonoundecanoic acid as a bifunctional linker, with the phosphonate group binding to the SiO2 substrate and the terminal carboxylate group binding to the nanoparticles. Subsequently, an Fe3O4 monolayer was formed over the Al2O3 layer using the same approach. The assembled Al2O3 and Fe3O4 nanoparticle monolayers acted as a catalyst support and catalyst, respectively, for the growth of vertically aligned CNTs. The CNTs were successfully synthesized using a conventional atmospheric pressure-chemical vapor deposition method with acetylene as the carbon precursor. Thus, these nanoparticle films provide a facile and inexpensive approach for producing homogenous CNTs.


2021 ◽  
Author(s):  
Marian Baah ◽  
Afifa Rahman ◽  
Sarah Sibilia ◽  
Gianmarco Trezza ◽  
Luigi Ferrigno ◽  
...  

Abstract In this paper, we propose an original approach for the real-time detection of industrial organic pollutants in water. It is based on the monitoring of the time evolution of the electrical impedance of low-cost graphitic nanomembranes. The developed approach exploits the high sensitivity of the impedance of 2D graphene-related materials to the adsorbents. We examined sensitivity of the nanomembranes based on Pyrolyzed Photoresist (PPF), Pyrolytic Carbon (PyC), and Multilayer Graphene (MLG) films. In order to realize a prototype of a sensor capable of monitoring the pollutants in water, the membranes were integrated into an ad-hoc printed circuit board. We demonstrated the correlation between the sensitivity of the electric impedance to adsorbents and the structure of the nanomembranes, and revealed that the amorphous PyC, being most homogeneous and adhesive to the SiO2 substrate, is the most promising in terms of integration into industrial pollutants sensors.


2021 ◽  
Author(s):  
Saeide Norouzi ◽  
kiazand fasihi

Abstract This paper reports the design and three dimensional (3D) simulation of a new photonic crystal (PC) pressure sensor. The device is constructed using a GaAs-based 2D PC slab on SiO2 substrate. The strain/stress simulations and also the spectral simulations are done using CST Studio Suite. In this investigation, the sensitivity of the proposed pressure sensor is calculated by considering the variation of the refractive index and also the deformation of the structure. The numerical results show that when pressure is applied, the refractive index variations cause an increment in the resonant wavelength of the transmission spectrum, but the deformation factor cause a decrease in the resonant wavelength. It has been shown that the relationship between the applied pressure and the resonant wavelength of the designed micro-cavity is linear. Based on the simulation results, the quality factor of the designed micro-cavity and the sensitivity of the pressure sensor are 2200 and 3.5 nm / GPa, respectively.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012110
Author(s):  
M A Chumak ◽  
A A Rokacheva ◽  
L A Filatov ◽  
A G Kolosko ◽  
S V Filippov ◽  
...  

Abstract This paper presents a study of large area field emitter based on carbon nanotubes grown by PECVD method on Si/SiO2 substrate with Fe catalyst. The catalyst was deposited by CVD on the substrate from ferrocene in the form of islands. The sample creation technology was described and results of the emission properties study were presented. Current-voltage characteristics were registered and tested for compliance with the cold field emission regime. The fluctuation statistic of effective microscopic parameters was constructed. Using data from a computerized field projector, the emission profile of the sample was calculated.


2021 ◽  
Vol 7 (1) ◽  
pp. 172-183
Author(s):  
Ahmad M. Al-Diabat ◽  
Natheer A. Algadri ◽  
Naser M. Ahmed ◽  
Abdulsalam Abuelsamen ◽  
Shaker A. Bidier

Sign in / Sign up

Export Citation Format

Share Document