Noble Dibenzothiophene-Based Bipolar Hosts for Blue Organic Light-Emitting Diodes Using Thermally Activated Delayed Fluorescence

2020 ◽  
Vol 20 (11) ◽  
pp. 7191-7195
Author(s):  
JaMin Lee ◽  
Sae Won Lee ◽  
Young Sik Kim

Novel thermally activated delayed fluorescence (TADF) host materials for blue electrophosphores-cence were designed by combining the electron acceptor dibenzothiophene (DBT) unit and the electron donor acridine derivatives into a single molecular unit by density functional theory (DFT). Depending on the optimal charge transfer, DFT and time-dependent DFT (TD-DFT) calculations for the ground state were performed to obtain the energy of the singlet (S1) and triplet (T1) excited states of the TADF material for Hartree-Fock percentage of TD-DFT. The sufficiently large separation between the HOMO and LUMO resulted in a small difference in energy (ΔEST) between the S1 and T1 states using DFT and TD-DFT calculations. The host molecules retained high triplet energy and showed great potential for use in blue organic light-emitting diodes (OLED). The results showed that these molecules are a good TADF host materials because they have a low barrier to hole and electron injection with a balanced charge transporting property for both holes and electrons, and a small ΔEST.

2020 ◽  
Vol 20 (11) ◽  
pp. 7196-7200
Author(s):  
Ja Min Lee ◽  
Sae Won Lee ◽  
Young Sik Kim

We designed a novel thermally activated delayed fluorescence (TADF) host molecules for blue elec-trophosphorescence by combining the electron acceptor benzimidazole (BI) unit and the electron donor acridine derivatives into a single molecular unit based on density functional theory (DFT). We obtained the energies of the first singlet (S1) and the first triplet (T1) excited states of the TADF materials by performing DFT and time-dependent DFT (TD-DFT) calculations on the ground state using dependence on charge transfer amounts for the optimal Hartree–Fock percentage in the exchange-correlation of TD-DFT. The DFT and TD-DFT calculations showed that the large separation between the highest occupied molecular orbital and the lowest unoccupied molecular orbital caused a small difference in energy (ΔEST) between the S1 and T1 states. The host molecules retained a high triplet energy and demonstrated a great potential for use in blue phosphorescent organic light-emitting diodes. The results showed that these molecules are promising host materials for TADF OLEDs because they have a low barrier to hole and electron injection, a balanced charge transport for both holes and electrons, and a small ΔEST.


2018 ◽  
Vol 6 (37) ◽  
pp. 10000-10009 ◽  
Author(s):  
Mallesham Godumala ◽  
Suna Choi ◽  
Seong Keun Kim ◽  
Si Woo Kim ◽  
Jang Hyuk Kwon ◽  
...  

Simple structured bipolar host materials boosted the device performance of solution processable blue and green thermally activated delayed fluorescence organic light emitting diodes.


Author(s):  
Abhishek Kumar Gupta ◽  
Tomas Matulaitis ◽  
David B. Cordes ◽  
Alexandra ------ Slawin ◽  
Ifor D. W. Samuel ◽  
...  

We have designed a highly twisted small TADF emitter PXZ-α-DK based on an -diketone (α-DK) as a strong acceptor and phenoxazine (PXZ) as a strong donor to obtain red-shifted emission in comparison to the equivalent -diketone linked to 9,9-dimethyl-9,10-dihydroacridine (DMAC). The PXZ-α-DK shows emission at 586 nm and DMAC-α-DK shows emission at 548 nm in 1,3-bis(N-carbazolyl)benzene (mCP) host at 1.5 wt% doping of the emitter, with short-delayed lifetimes of 6.9 μs for PXZ-α-DK and 7.6 μs for DMAC-α-DK. OLEDs fabricated using these emitters show green electroluminescence at 555 nm for DMAC-α-DK, with a maximum external quantum efficiency, EQEmax, of 6.3%, and orange electroluminescence at 585 nm for PXZ-α-DK, with an EQEmax of 0.8%. We corroborate the optoelectronic properties of these emitters with DFT calculations.


Sign in / Sign up

Export Citation Format

Share Document