New Adsorption Models for Entirely Describing the Adsorption Isotherm and Heat of Methane in Heterogeneous Nanopore Structures of Coal

2021 ◽  
Vol 21 (1) ◽  
pp. 212-224
Author(s):  
Hai-Jian Li ◽  
Jian-Hong Kang ◽  
Zhe-Jun Pan ◽  
Fu-Bao Zhou ◽  
Jin-Chang Deng ◽  
...  

To understand the adsorption mechanism of methane in heterogeneous nanopore structures of coal, integral adsorption models based on linear, exponential, hyperbolic and quadratic energy distribution functions are established. The adsorption energy domain of the new models is assumed to be a finite interval. These new adsorption models can describe both the adsorption isotherm and the adsorption heat. A volumetric method of adsorption with a microcalorimetry system is used to measure the adsorption isotherms and integral heat, and then the parameters of the new models are obtained by fitting the experimental data. Since the adsorption heat can be different for different adsorption models, it is necessary to fit the adsorption isotherms and heat simultaneously. The fitting results of the adsorption isotherms and heat show that the new models are able to describe the experimental data better than the Langmuir model. By comparing the fitting results and the effective range of adsorption energy of the different adsorption models, it is shown that the exponential energy distribution function is the most reasonable model for methane adsorption in coals, which can be used to evaluate the energetic heterogeneity of nanopores in coal samples. The decreasing exponential energy distributions of three coal samples indicate that a larger adsorption energy corresponds to fewer adsorption sites in the coal samples. The proportion of high adsorption energy is related to the micro-nanopore volume in the coal samples.

2021 ◽  
Vol 6 (1) ◽  
pp. 205-234
Author(s):  
Risti Ragadhita ◽  
Asep Bayu Dani Nandiyanto

Adsorption isotherm is the most important calculation to predict and analyze the various possible mechanisms that occur in adsorption process. However, until now, most studies only presented the adsorption isotherm theory, and there are no studies that explain the adsorption isotherm thoroughly and in detail from theory to calculation. Therefore, this study contains guidelines for selecting the type of adsorption isotherm to describe the entire adsorption data set, which is featured by the ten most common adsorption isotherms. The steps of how to analyze the two-parameter monolayer adsorption are presented. This study is expected to provide clear and useful information for researchers who are working and studying on the adsorption process.


2012 ◽  
Vol 13 (3) ◽  
pp. 276
Author(s):  
Rayandra Asyhar

The adsorption isotherms of phenol from aqueous solution onto adsorbents obtained from egg shell (ESA) andpalm shell (PSA) were investigated. The objectives of the investigation were to understand the effect of bothadsorbents on solution pH and to study the adsorption equilibrium of phenol onto the adsorbents. The effect ofadsorbent on pH of solution was studied by shaking the adsorbent of 0.1 to 1.5 g with 100 ml of acidic aqueoussolution for 30 min at room temperature. The adsorption experiments were performed by stirring appropriateamount of adsorbent with 100 ml of 50 mg/l concentration of phenol at constant temperature and pressure. TheLangmuir and Fraundlich adsorption models were applied to experimental data and the isotherm constants werecalculated using linier regression analysis. The results showed that the adsorption capacity of the adsorbentsincreases with increasing of dosage and contact time. Also, pH of solution affected the adsorption isotherm ofphenol, where maximum adsorption was observed at pH values lower than 9.


Sign in / Sign up

Export Citation Format

Share Document