Effect of Al alloy back panel on the dynamic penetration and damage characteristics of ceramic composite armors

2019 ◽  
Vol 9 (7) ◽  
pp. 723-731
Author(s):  
Weilan Liu ◽  
Zhou Chen ◽  
Tengzhou Xu ◽  
Junfeng Hu ◽  
Jiaduo Li

This paper mainly focuses on the investigation of dynamic penetration and damage characteristics of a hybrid ceramic composite armor normally impacted by 12.7 mm armor piercing incendiary projectiles. The hybrid ceramic composite armor was composed of a ceramic cylinder layer, a Ti–6Al–4V plate, an ultrahigh molecular weight polyethylene (UHMWPE) composite layer, and an Al alloy panel. Three different areal densities of composite laminates with 82, 87, and 92 kg/m2 were tested. 3D finite element model of the ceramic composite armor was generated in ABAQUS, and the simulation results were employed to study the damage evolution. The effect of alumina ceramic cylinders layer on the ballistic performance and the failure mechanisms of Ti–6Al–4V and UHMWPE after ballistic impact were examined by experimental and simulative results. According to the numerical and analytical models, an optimal thickness range of Al alloy back panel was found in minimizing areal density of the ceramic composite armor.

2015 ◽  
Vol 87 ◽  
pp. 421-427 ◽  
Author(s):  
Weilan Liu ◽  
Zhaohai Chen ◽  
Zhaofeng Chen ◽  
Xingwang Cheng ◽  
Yangwei Wang ◽  
...  

2010 ◽  
Vol 139-141 ◽  
pp. 308-313 ◽  
Author(s):  
Ju Bin Gao ◽  
Yang Wei Wang ◽  
Ling Yu Zhang ◽  
Guo Feng Han ◽  
Fu Chi Wang

Adhesive is an important part of ceramic-metal composite armor. In order to obtain excellent ballistic performance, some adhesive with a variety of content of nano-SiO2 was prepared, and mechanical properties and ballistic test were conducted. The results show that the pores in adhesive decrease the strength of the adhesive, and the fracture happens along with the pores. To add nano-SiO2 in adhesive can decrease the porosity and the scale of the pores. In the ballistic performance, the adhesive enhance the acoustic impedance, the greater acoustic impedance can increase the energy of transmission wave and decrease the energy of reflection wave, leading to that the ceramic is destroyed slightly. The targets with adhesive added in 20% nano-SiO2 express the best anti-bullet properties. There are so many big blocks left in targets and the height of back convex is only 2.36mm.


Author(s):  
L. Bracamonte ◽  
R. Loutfy ◽  
I.K. Yilmazcoban ◽  
S.D. Rajan

2016 ◽  
Vol 84 ◽  
pp. 33-40 ◽  
Author(s):  
Weilan Liu ◽  
Zhaofeng Chen ◽  
Xingwang Cheng ◽  
Yangwei Wang ◽  
Adjei Richard Amankwa ◽  
...  

2021 ◽  
Vol 2011 (1) ◽  
pp. 012031
Author(s):  
Youchun Zou ◽  
Chao Xiong ◽  
Junhui Yin ◽  
Huiyong Deng ◽  
Kaibo Cui

2010 ◽  
Vol 65 ◽  
pp. 153-162
Author(s):  
Jack R. Little Jr.

Advanced ceramic materials are required to meet increasing high temperature demands of components in advanced propulsion engines for high performance aircraft as well as increasing structural demands in ceramic-composite armor. Monitoring the structural performance of these advanced ceramic materials presents challenges. Recently a new technology, Evisive ScanTM, based on microwave interferometry has been developed that allows condition monitoring. The internationally patented Evisive Scan™ method (1, 2, 3, 4, 5, 6), utilizes microwaves to interrogate dielectric materials. The microwaves are reflected at areas of changing dielectric constant. The reflected energy and the interrogating beam are combined to form an interference pattern which is measured in the transceiver as a signal voltage. The signal voltage is sampled at many positions in the inspection area. This point cloud is displayed as an Evisive Scan™ image, which presents volumetric detail of the inspected part. Over the past two years the technology has been demonstrated on Ceramic Matrix Composites and has shown to be an efficient measurement of porosity and manufacturing defects. The method has also been demonstrated to be applicable to ceramic composite armor made of monolithic ceramic tiles in complex, multilayer structures.


Sign in / Sign up

Export Citation Format

Share Document