ballistic test
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 20)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
pp. 004051752110600
Author(s):  
Dan Yang ◽  
Qingsong Wei ◽  
Xiaogang Chen ◽  
Jinchun Li

Ballistic performance and moldability are two important properties for 3D curved-surface ballistic applications. However, these two properties are contradictory to each other and impossible to improve at the same time, which is a technical issue that needs to be solved urgently in the research for ballistic materials for 3D curved-surface ballistic applications. In order to solve this issue, a new 3D compound structure fabric has been developed as part of our former research and has been shown to provide better ballistic performance with equivalent moldability compared to 3D angle-interlock fabric—a well-known 3D material for 3D curved-surface ballistic applications. Nevertheless, the ballistic performance of this new fabric itself is not clear, and further research is necessary. In this study, the ballistic performance of this new 3D compound structure fabric was investigated via the finite element analysis (FEA) model to examine energy absorption and penetration resistance. A ballistic test was also carried out to verify the results of the FEA model, and this demonstrated that the theoretical model was consistent with the experimental results.


2021 ◽  
Vol 5 (6) ◽  
pp. 1036-1043
Author(s):  
Ardi wijaya ◽  
Puji Rahayu ◽  
Rozali Toyib

Problems in image processing to obtain the best smile are strongly influenced by the quality, background, position, and lighting, so it is very necessary to have an analysis by utilizing existing image processing algorithms to get a system that can make the best smile selection, then the Shi-Tomasi Algorithm is used. the algorithm that is commonly used to detect the corners of the smile region in facial images. The Shi-Tomasi angle calculation processes the image effectively from a target image in the edge detection ballistic test, then a corner point check is carried out on the estimation of translational parameters with a recreation test on the translational component to identify the cause of damage to the image, it is necessary to find the edge points to identify objects with remove noise in the image. The results of the test with the shi-Tomasi algorithm were used to detect a good smile from 20 samples of human facial images with each sample having 5 different smile images, with test data totaling 100 smile images, the success of the Shi-Tomasi Algorithm in detecting a good smile reached an accuracy value of 95% using the Confusion Matrix, Precision, Recall and Accuracy Methods.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3080
Author(s):  
Chang-Pin Chang ◽  
Cheng-Hung Shih ◽  
Jhu-Lin You ◽  
Meng-Jey Youh ◽  
Yih-Ming Liu ◽  
...  

In this study, the ballistic performance of armors composed of a polyurea elastomer/Kevlar fabric composite and a shear thickening fluid (STF) structure was investigated. The polyurea used was a reaction product of aromatic diphenylmethane isocyanate (A agent) and amine-terminated polyether resin (B agent). The A and B agents were diluted, mixed and brushed onto Kevlar fabric. After the reaction of A and B agents was complete, the polyurea/Kevlar composite was formed. STF structure was prepared through pouring the STF into a honeycomb paper panel. The ballistic tests were conducted with reference to NIJ 0101.06 Ballistic Test Specification Class II and Class IIIA, using 9 mm FMJ and 44 magnum bullets. The ballistic test results reveal that polyurea/Kevlar fabric composites offer better impact resistance than conventional Kevlar fabrics and a 2 mm STF structure could replace approximately 10 layers of Kevlar in a ballistic resistant layer. Our results also showed that a high-strength composite laminate using the best polyurea/Kevlar plates combined with the STF structure was more than 17% lighter and thinner than the conventional Kevlar laminate, indicating that the high-strength protective material developed in this study is superior to the traditional protective materials.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2591
Author(s):  
Vasudevan Alagumalai ◽  
Vigneshwaran Shanmugam ◽  
Navin Kumar Balasubramanian ◽  
Yoganandam Krishnamoorthy ◽  
Velmurugan Ganesan ◽  
...  

The present study is aimed at investigating the effect of hybridisation on Kevlar/E-Glass based epoxy composite laminate structures. Composites with 4 mm thickness and 16 layers of fibre (14 layers of E-glass centred and 2 outer layers of Kevlar) were fabricated using compression moulding technique. The fibre orientation of the Kevlar layers had 3 variations (0, 45 and 60°), whereas the E-glass fibre layers were maintained at 0° orientation. Tensile, flexural, impact (Charpy and Izod), interlaminar shear strength and ballistic impact tests were conducted. The ballistic test was performed using a gas gun with spherical hard body projectiles at the projectile velocity of 170 m/s. The pre- and post-impact velocities of the projectiles were measured using a high-speed camera. The energy absorbed by the composite laminates was further reported during the ballistic test, and a computerised tomographic scan was used to analyse the impact damage. The composites with 45° fibre orientation of Kevlar fibres showed better tensile strength, flexural strength, Charpy impact strength, and energy absorption. The energy absorbed by the composites with 45° fibre orientation was 58.68 J, which was 14% and 22% higher than the 0° and 60° oriented composites.


2021 ◽  
Vol 70 (2) ◽  
pp. 77-86
Author(s):  
Piotr Kędzierski ◽  
Julia Watorowska

The paper presents an analysis of applicability of two meshless methods to the modeling of pistol bullets on the example of a 9 mm Parabellum. The studies included the following methods: SPH and SPG. The results of computer simulations were confronted with ballistic test results in terms of shape-dimensional compliance of the deformed projectile. The relative error of the projectile diameter was 15 and 17% for the SPG and SPH methods, respectively. The deformation form for the SPH method deviated from the ballistic test results, while the SPG method faithfully reproduced the shape of the deformed projectile. Keywords: mechanical engineering, impact simulation, pistol bullet, SPH, SPG


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3334
Author(s):  
Teresa Fras

The study concerns a protection system applied against kinetic-energy penetrators (KEPs) composed of steel plates sandwiching a rubber layer. Laminated steel-elastomer armours represent non-explosive reactive (NERA) armours that take advantage of a so-called ‘bulging effect’ to mitigate KEP projectiles. Upon an impact, the side steel plates deform together with the deforming rubber interlayer. Their sudden deformation (bulging) in opposite directions disturbs long and slender KEP projectiles, causing their fragmentation. The presented discussion is based on the experimental investigation, confirming that the long-rod projectiles tend to fracture into several pieces due to the armour perforation. A numerical simulation accompanies the ballistic test providing an insight into the threat/target interactions. The presented experimental–numerical study explains the principles of the analysed protection mechanism and proves the efficiency of the materials composition making up the laminated non-reactive protection system.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1450
Author(s):  
Farah Alkhatib ◽  
Elsadig Mahdi ◽  
Aamir Dean

In this paper, hybrid composite plates for ballistic protection were investigated experimentally and numerically, with a target to reduce the weight of currently used body armor inserts and, at the same time, satisfy the requirements of the National Institute of Justice’s (NIJ) ballistic protection standards. The current study has three phases to improve the ballistic plate’s energy absorption capability. The first phase is devoted to studying the effect of the material types, including three different fibers: carbon fiber, date palm fiber, and Kevlar fiber. The second phase is dedicated to studying the effect of hybridization within layers. The two previous phases’ results were analyzed to optimize the material based on the hybrid composite ballistic plate’s maximum energy absorption capability. The commercial finite element software package LS-DYNA was employed for numerical modeling and simulation. The hybrid composite ballistic plate could absorb more impact energy than the non-hybrid Kevlar plate with the same area density from the numerical simulation results. This study provides lighter-weight ballistic inserts with a high protection level, making movement easier for the wearer. The numerical results were verified by comparing results of a plate made of 40 layers of Kevlar with an actual ballistic test. The results indicated that the simulation results were conservative compared to the ballistic test.


Author(s):  
Dawid Goździk ◽  
Bartosz FIKUS ◽  
Jacek KIJEWSKI

The preliminary results of comparative investigations on intermediate cartridges were presented in this paper. The research focused mainly on the adopted assumptions and verification of research methods. Pressure ballistic test barrels, manufactured according to NATO EPVAT standards, were used for tests. The pressure courses of propellant gases in the barrel and the projectile velocity at four points of the bullet trajectory were measured. The pressure impulses, R100 parameter at 50 m and average bullet drag coefficient were calculated for each type of cartridge. The results allowed for a preliminary ballistic comparison of the most popular types of intermediate cartridges.


Sign in / Sign up

Export Citation Format

Share Document