Preparation and properties of ZrO2-5CrMnMo composites by ceramic injection molding

2021 ◽  
Vol 11 (9) ◽  
pp. 1594-1601
Author(s):  
Yonggen Sun ◽  
Yanhan Fei ◽  
Yanchun Wang ◽  
Yuhui Jin ◽  
Lanjun Du ◽  
...  

ZrO2-5CrMnMo composites were fabricated by ceramic injection molding in this research. The hardness and wear properties of ZrO2 ceramic layer and 5CrMnMo substrate were investigated. Moreover, physical properties and microstructures of ZrO2 ceramic coatings were studied and the interfaces of composite samples were observed. The results illustrated that the interface was smooth and properly bonded, and it was concluded that the 5CrMnMo substrate ceramic layer could be provided effectively by ZrO2 ceramic coating. Thermal insulation and thermal shock cycle tests were carried out. The heat insulating property of ZrO2 ceramic coating was remarkable, and even better at a high temperature. The composite samples prepared at 1200 °C did not failed until after more than 68 thermal shocks. The main reasons of limiting the application of this composites so far were still the physical and thermodynamic mismatch between ceramics and steel. But the composite samples fabricated by ceramic injection molding showed excellent thermal shock resistance and high bonding strength in this work.

2011 ◽  
Vol 189-193 ◽  
pp. 1105-1108
Author(s):  
Shu Xian Liu ◽  
Li Li Shen ◽  
Qian Ping Wang

Flame sprayed ceramic coatings on the wall of coke oven are characterized before and after melting. The attempt has been made to investigate thermal shock resistant, carbon deposit resistant, wear resistant of the coated and melted samples. The techniques used are SEM and XRD. The results show that: 1) Presence of quartz, corundum and mullite are identified in the surface of the coated specimen. Good adhesion between the coating and the substrate is caused by presence of quartz which is the same content as the substrate.2) The thermal shock resistance cycles of the coating samples are 15 ~ 30 times, but uncoated samples are only 1~2 times. The main reason is that he coating–substrate interface shows no gaps or cracks, and it has a characteristic feature of good adhesion between the coating and the substrate. 3) The wear resistance of the coated samples are better than that of the uncoated samples because glass-coating is more smooth than the uncoated specimen and the mullite and corundum in the coating have the high hardness value that makes the hardness of the coating increased.


2009 ◽  
Vol 79-82 ◽  
pp. 775-778 ◽  
Author(s):  
Hong Li Liu ◽  
Chun Ying Tian

The self-healing ceramic coating against oxidation for carbon/carbon composite was fabricated via preceramic polymer pyrolysis process using polysilazane as preceramic and MoSi2, B4C powders as fillers. By means of SEM and XRD, the phase compose and microstructure of coating were characterized, and preliminarily study on its anti-oxidation ability and thermal shock resistance were conducted. The results showed that, the coating is composed of the resisting oxidation layer and the sealing layer. The thickness of the coating is about 50μm, and the coating is uniform and densified. Good contact at the interfaces is visible on the SEM photograph. At 1300°C temperature, the thermal shock resistance test was conducted 50 times, the weight loss rate was 2.12%. In range of 1200°C~1500°C, the anti oxidation ability of the coating is good.


2019 ◽  
Vol 14 (11) ◽  
pp. 1597-1605
Author(s):  
Yang Lyu ◽  
Xuan Shao ◽  
Wen-Xue Wang ◽  
Hui Tang

In this paper, nano-CeO2–Y2O3 co-stabilized ZrO2 ceramic powders (CYSZ) were firstly prepared by co-precipitation method, and CYSZ powder was spray-granulated, followed by thermal plasma spraying of nano-CYSZ thermal barrier coating on 35Cr2Ni4 MoA alloy matrix. After XRD and SEM analysis, the five CYSZ ceramic coatings (CeO2 content 0, 1, 5, 10, 15 mol%) prepared were tetragonal phase structures before and after the thermal shock experiment, and the thickness of CYSZ ceramic coating was about 200 μm. Adding appropriate amount of nano CeO2 promoted the formation of micro-cracks in the coating, released the coating stress, slowed down the thermal shock damage process, and prevented the transformation from t-ZrO2 to m-ZrO2. The AFM morphology showed that the coating surface grains grow vertically after thermal shock cycle, which indicated that the entry of Ce4+ into ZrO2 lattice resulted in lattice distortion and made the grains more stable. When the content of CeO2 is 1 mol%, the thermal shock resistance excellent is 84 times. Therefore, the addition of CeO2 can effectively improve the thermal shock resistance performance of CYSZ thermal barrier coating, meeting the requirements of high temperature working conditions of aeroengine and hot-end components.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Habib Sahlaoui ◽  
Kamel Makhlouf ◽  
Habib Sidhom

The effect of the glazed layer and firing conditions (temperature and duration) on the thermal shocks behavior of tableware porcelains has been studied. Two types of glazed layers and three firing conditions, used industrially in the commercial porcelains manufacture, are used in this investigation. Repeated thermal shock tests showed that the glazed layer with higher alumina/silica ratio is more resistant to thermal shocks and that the slow firing cycle, even at a relatively low temperature, is very beneficial for the thermal shock resistance of the porcelain matrix. Three-point bending tests showed that the crazing phenomenon, which affects the glazed layers as well as the porcelain matrix, does not affect significantly the mechanical resistance of these materials.


2015 ◽  
Vol 41 (3) ◽  
pp. 4706-4713 ◽  
Author(s):  
X. Shan ◽  
L.Q. Wei ◽  
X.M. Zhang ◽  
W.H. Li ◽  
W.X. Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document