scholarly journals Invariant representation of face identity in the fusiform face area (FFA): The effect of external facial information

2010 ◽  
Vol 8 (6) ◽  
pp. 404-404
Author(s):  
V. Axelrod ◽  
G. Yovel
2016 ◽  
Author(s):  
J. Swaroop Guntupalli ◽  
Kelsey G. Wheeler ◽  
M. Ida Gobbini

AbstractNeural models of a distributed system for face perception implicate a network of regions in the ventral visual stream for recognition of identity. Here, we report an fMRI neural decoding study in humans that shows that this pathway culminates in a right inferior frontal cortex face area (rIFFA) with a representation of individual identities that has been disentangled from variable visual features in different images of the same person. At earlier stages in the pathway, processing begins in early visual cortex and the occipital face area (OFA) with representations of head view that are invariant across identities, and proceeds to an intermediate level of representation in the fusiform face area (FFA) in which identity is emerging but still entangled with head view. Three-dimensional, view-invariant representation of identities in the rIFFA may be the critical link to the extended system for face perception, affording activation of person knowledge and emotional responses to familiar faces.Significance StatementIn this fMRI decoding experiment, we address how face images are processed in successive stages to disentangle the view-invariant representation of identity from variable visual features. Representations in early visual cortex and the occipital face area distinguish head views, invariant across identities. An intermediate level of representation in the fusiform face area distinguishes identities but still is entangled with head view. The face-processing pathway culminates in the right inferior frontal area with representation of view-independent identity. This paper clarifies the homologies between the human and macaque face processing systems. The findings show further, however, the importance of the inferior frontal cortex in decoding face identity, a result that has not yet been reported in the monkey literature.


2010 ◽  
Vol 50 (15) ◽  
pp. e1-e3 ◽  
Author(s):  
Xiaokun Xu ◽  
Xiaomin Yue ◽  
Mark D. Lescroart ◽  
Irving Biederman ◽  
Jiye G. Kim

2018 ◽  
Vol 129 (8) ◽  
pp. e80-e81
Author(s):  
A. Haeger ◽  
C. Pouzat ◽  
V. Luecken ◽  
K. N’Diaye ◽  
C.E. Elger ◽  
...  

2004 ◽  
Vol 16 (9) ◽  
pp. 1669-1679 ◽  
Author(s):  
Emily D. Grossman ◽  
Randolph Blake ◽  
Chai-Youn Kim

Individuals improve with practice on a variety of perceptual tasks, presumably reflecting plasticity in underlying neural mechanisms. We trained observers to discriminate biological motion from scrambled (nonbiological) motion and examined whether the resulting improvement in perceptual performance was accompanied by changes in activation within the posterior superior temporal sulcus and the fusiform “face area,” brain areas involved in perception of biological events. With daily practice, initially naive observers became more proficient at discriminating biological from scrambled animations embedded in an array of dynamic “noise” dots, with the extent of improvement varying among observers. Learning generalized to animations never seen before, indicating that observers had not simply memorized specific exemplars. In the same observers, neural activity prior to and following training was measured using functional magnetic resonance imaging. Neural activity within the posterior superior temporal sulcus and the fusiform “face area” reflected the participants' learning: BOLD signals were significantly larger after training in response both to animations experienced during training and to novel animations. The degree of learning was positively correlated with the amplitude changes in BOLD signals.


Sign in / Sign up

Export Citation Format

Share Document