scholarly journals Icy road ahead – gaze during perturbed walking

2020 ◽  
Vol 20 (11) ◽  
pp. 559
Author(s):  
Karl Kopiske ◽  
Daniel Koska ◽  
Thomas Baumann ◽  
Christian Maiwald ◽  
Wolfgang Einhäuser
Keyword(s):  
2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 523-523
Author(s):  
Pei-Chun Kao ◽  
Michaela Pierro

Abstract To develop effective fall prevention intervention, it is necessary to understand how older adults respond to challenges that demand cognitive-motor dual-tasking capability, an important capability in the daily lives. The purpose of this study is to investigate how older adults adjust their motor responses when encountering cognitive and walking perturbations simultaneously. We recorded kinematic data as subjects walked on a treadmill with or without 1) continuous random-amplitude treadmill platform sways (Perturbed vs. No-perturbed walking); and 2) each of the four cognitive tasks: Paced Auditory Serial Addition test (PASAT), clock test, visual color-word incongruent test (V-stroop), and auditory pitch-word incongruent test (A-stroop). We computed dynamic margins of stability (MOS), gait variability, and short-term local divergence exponent (LDE) of the trunk motion (local stability). Data of ten older subjects (age: 72.2±4.9) show that cognitive performance did not differ between standing, Perturbed or No-perturbed walking. Subjects demonstrated significantly greater local instability and variability in step measures, joint angle and MOS during Perturbed than No-perturbed walking (p<0.001). During dual-task conditions, subjects walked with significantly larger medio-lateral MOS (MOSML) compared to walking only, especially during early phase of the trial. During Perturbed walking, subjects had significantly larger MOSML during PASAT and Vstroop than walking only. Our data showed that subjects tried to increase their dynamic MOS during Perturbed walking or a cognitive task more difficult or taxing visual attention. However, the adjustments do not sustain throughout the trial. These findings suggest older adults tend to prioritize cognitive over walking tasks even when encountering walking perturbations.


2020 ◽  
Vol 52 (7S) ◽  
pp. 94-94
Author(s):  
Chiao-I Lin ◽  
Mina Khajooei ◽  
Alexandra Nair ◽  
Mika Heikkila ◽  
Hannes Kaplick ◽  
...  

2014 ◽  
Vol 47 (10) ◽  
pp. 2286-2291 ◽  
Author(s):  
Roy Müller ◽  
Kevin Tschiesche ◽  
Reinhard Blickhan

2016 ◽  
Vol 49 (7) ◽  
pp. 1244-1247 ◽  
Author(s):  
Christopher McCrum ◽  
Gaspar Epro ◽  
Kenneth Meijer ◽  
Wiebren Zijlstra ◽  
Gert-Peter Brüggemann ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Maarten Afschrift ◽  
Lorenzo Pitto ◽  
Wouter Aerts ◽  
Robert van Deursen ◽  
Ilse Jonkers ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Tanvi Bhatt ◽  
Yiru Wang ◽  
Shuaijie Wang ◽  
Lakshmi Kannan

This study examined the effects of perturbation training on the contextual interference and generalization of encountering a novel opposing perturbation. One hundred and sixty-nine community-dwelling healthy older adults (69.6 ± 6.4 years) were randomly assigned to one of the three groups: slip-perturbation training (St, n = 67) group received 24 slips, trip-perturbation training (Tt, n = 67) group received 24 trips, and control (Ctrl: n = 31) group received only non-perturbed walking trials (ClinicalTrials.gov NCT03199729; https://clinicaltrials.gov/ct2/show/NCT03199729). After training, all groups had 30 min of rest and three post-training non-perturbed walking trials, followed by a reslip and a novel trip trial for St, a retrip and a novel slip trial for Tt, and randomized novel slip and trip trials for Ctrl. The margin of stability (MOS), step length, and toe clearance of post-training walking trials were compared among three groups to examine interferences in proactive adjustment. Falls, MOS at the instant of recovery foot touchdown, and hip height of post-training perturbation trials were investigated to detect interferences and generalization in reactive responses. Results indicated that prior adaptation to slip perturbation training, resulting in walking with a greater MOS (more anterior) and a shorter step length (p < 0.01) than that of the Ctrl group, would be associated with a greater likelihood to forward balance loss if encountered with a trip. The trip adaptation training mainly induced a higher toe clearance during walking (p < 0.01) than the Ctrl group, which could lead to reduced effectiveness of the reactive response when encountered with a novel slip. However, there was no difference in the reactive MOS, limb support, and falls between the control group and the slip and trip training groups on their respective opposing novel perturbation post-training (MOS, limb support, and falls for novel slip: Tt = Ctrl; for the novel trip: St = Ctrl, both p > 0.05). Current findings suggested that, although perturbation training results in proactive adjustments that could worsen the reactive response (interference) when exposed to an unexpected opposing perturbation, older adults demonstrated the ability to immediately generalize the training-induced adaptive reactive control to maintain MOS, to preserve limb support control, and to reduce fall risk.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244582
Author(s):  
David Ó’Reilly ◽  
Peter Federolf

Introduction The aim of this study was to identify movement synergies during normal-walking that can differentiate healthy adults in terms of gait adaptability at various speeds. To this end, the association between movement synergies and lower-limb coordination variability or Deviation Phase (DP) was investigated. This study also investigated the moderating effect of movement synergies on the relationship between DP and the smoothness of arm-swing motion (NJI). Method A principal component analysis of whole-body marker trajectories from normal-walking treadmill trials at 0.8m/s, 1.2m/s and 1.6m/s was undertaken. Both DP and NJI were derived from approx. 8 minutes of perturbed-walking treadmill trials. Principal movement components, PMk, were derived and the RMS of the 2nd-order differentiation of these PMk (PAkRMS) were included as independent variables representing the magnitude of neuromuscular control in each PMk. Each PAkRMS were input into maximal linear mixed-effects models against DP and (DP x NJI) respectively. A stepwise elimination of terms and comparison of models using Anova identified optimal models for both aims. Results The principal movement related to the push-off mechanism of gait (PA4RMS) was identified as an optimal model and demonstrated a significant negative effect on DP however this effect may differ considerably across walking-speeds. An optimal model for describing the variance in (DP x NJI) included a fixed-effect of PA6RMS representing Right—Left side weight transfer was identified. Interpretation The hypotheses that individuals who exhibited greater control on specific kinematic synergies would exhibit variations during perturbed walking was substantiated. Supporting evidence for the role of movement synergies during the double-support phase of gait in proactively correcting balance was presented as well as the potential for this approach in targeted rehabilitation. The potential influence of leg dominance on gait adaptability was also discussed. Future studies should investigate further the role of walking-speed and leg dominance on movement synergies and look to generalize these findings to patient populations.


Sign in / Sign up

Export Citation Format

Share Document