pressure modulation
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Sabine Kling

A novel approach is presented for the non-invasive quantification of axial displacement and strain in corneal and anterior crystalline lens tissue in response to a homogenous ambient pressure change. A spectral domain optical coherence tomography (OCT) system was combined with a custom-built set of swimming goggles and a pressure control unit to acquire repetitive cross-sectional scans of the anterior ocular segment before, during and after ambient pressure modulation. The potential of the technique is demonstrated in vivo in a healthy human subject. The quantification of the dynamic deformation response, consisting of axial displacement and strain, demonstrated an initial retraction of the eye globe (−0.43 to −1.22 nm) and a subsequent forward motion (1.99 nm) in response to the pressure change, which went along with a compressive strain induced in the anterior crystalline lens (−0.009) and a tensile strain induced in the cornea (0.014). These mechanical responses appear to be the result of a combination of whole eye motion and eye globe expansion. The latter simulates a close-to-physiologic variation of the intraocular pressure and makes the detected mechanical responses potentially relevant for clinical follow-up and pre-surgical screening. The presented measurements are a proof-of-concept that non-contact low-amplitude ambient pressure modulation induces tissue displacement and strain that is detectable in vivo with OCT. To take full advantage of the high spatial resolution this imaging technique could offer, further software and hardware optimization will be necessary to overcome the current limitation of involuntary eye motions.


2021 ◽  
Author(s):  
Ning Ji ◽  
Wan-Hua Lin ◽  
Yuanheng Li ◽  
Fei Chen ◽  
Lisheng Xu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabine Kling ◽  
Emilio A. Torres-Netto ◽  
Hormoz Abdshahzadeh ◽  
Edgar M. Espana ◽  
Farhad Hafezi

AbstractEhlers–Danlos syndrome (EDS) is a genetic disease leading to abnormalities in mechanical properties of different tissues. Here we quantify corneal biomechanical properties in an adult classic EDS mouse model using two different measurement approaches suited for murine corneal mechanical characterization and relate differences to stromal structure using Second Harmonic Generation (SHG) microscopy. Quasi-static Optical Coherence Elastography (OCE) was conducted non-invasively during ambient pressure modulation by − 3 mmHg. 2D-extensometry measurements was conducted invasively consisting of a pre-conditioning cycle, a stress-relaxation test and a rupture test. In a total of 28 eyes from a Col5a1+/− mouse model and wild-type C57BL/6 littermates (wt), Col5a1+/− corneas were thinner when compared to wt, (125 ± 11 vs 148 ± 10 μm, respectively, p < 0.001). Short-term elastic modulus was significantly increased in OCE (506 ± 88 vs 430 ± 103 kPa, p = 0.023), and the same trend was observed in 2D-extensometry (30.7 ± 12.1 kPa vs 21.5 ± 5.7, p = 0.057). In contrast, in stress relaxation tests, Col5a1+/− corneas experienced a stronger relaxation (55% vs 50%, p = 0.01). SHG microscopy showed differences in forward and backward scattered signal indicating abnormal collagen fibrils in Col5a1+/− corneas. We propose that disturbed collagen fibril structure in Col5a1+/− corneas affects the viscoelastic properties. Results presented here support clinical findings, in which thin corneas with global ultrastructural alterations maintain a normal corneal shape.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunpeng Song ◽  
Huanrui Yang ◽  
Feng Liu ◽  
Gary J. Cheng

AbstractThe carriers’ transportation between layers of two-dimensional (2D) perovskites is inhibited by dielectric confinement. Here, for the first time, we employ a femtosecond laser to introduce ultrafast shock pressure in the range of 0~15.45 GPa to reduce dielectric confinement by modulating the structure and exciton dynamics in a perovskite single crystal (PSCs), e.g. (F-PEA)2PbI4 (4-fluorophenethylammonium, F-PEA). The density functional theory (DFT) simulation and experimental results show that the inorganic framework distortion results in a bandgap reduction. It was found that the exciton-optical phonon coupling and free excitons (FEs) binding energy are minimized at 2.75 GPa shock pressure due to a reduction in dielectric confinement. The stability testing under various harsh light and humid thermal conditions shows that femtosecond laser shocking improves the stability of (F-PEA)2PbI4 PSCs. Femtosecond laser shock processing provides a new approach for regulating the structure and enhancing halide perovskite properties.


Dysphagia ◽  
2021 ◽  
Author(s):  
Katharina Winiker ◽  
Kristin Gozdzikowska ◽  
Esther Guiu Hernandez ◽  
Seh Ling Kwong ◽  
Phoebe Macrae ◽  
...  

2021 ◽  
Vol 125 (2) ◽  
pp. 539-546
Author(s):  
Rosario Oliva ◽  
Nisrine Jahmidi-Azizi ◽  
Sanjib Mukherjee ◽  
Roland Winter

2020 ◽  
Author(s):  
Ehsan Arasteh ◽  
Francis Assadian

This chapter discusses control design of three different brake-by-wire actuators. The brakes studied include an Electro-Hydraulic brake with pressure modulation for wheel slip control, and two different Electro-Mechanical Brake configurations that directly use electric motors to control the movement of the caliper for wheel slip control. After modeling the actuators with the use of bond graphs, a cascaded control architecture is used to control these active systems. Individual controllers are designed using Youla robust control design method. Then, a feed-forward disturbance rejection is designed and added to the loops and its effectiveness is analyzed. Finally, a one-wheel model is used to compare these brake-by-wire systems in terms of stopping distance and actuator efforts.


2020 ◽  
Author(s):  
Qiong Ma ◽  
Chao Chu ◽  
Yanbo Xue ◽  
Yu Yan ◽  
Jiawen Hu ◽  
...  

Abstract Background: Salt is a crucial factor for blood pressure modulation, especially in salt-sensitive individuals. Sphingosine-1-phosphate (S1P), a pleiotropic bioactive sphingolipid metabolite participating in blood pressure regulation, has recently been identified as a novel lipid diuretic factor. However, the relationships among salt intake, circulating S1P levels, and blood pressure changes in human beings are unknown. Thus, we conducted this intervention trial to explore the effect of dietary salt intake on plasma S1P levels and to examine the relationship between S1P and blood pressure in Chinese adults.Methods: 42 participants (aged 18–65 years) were recruited from a rural community in Shaanxi, China. All participants first maintained their normal diet for 3 days, then sequentially ate a low-sodium diet (3.0 g/day NaCl) for 7 days, followed by a high-sodium diet (18.0 g/day NaCl) for 7 days. We assessed their plasma S1P concentrations on the last day of each intervention phase by liquid chromatography-tandem mass spectrometry. We classified the subjects who demonstrated at least a 10% increase in mean arterial pressure upon transitioning from a low-salt to a high-salt diet as salt-sensitive and the others as salt-resistant. Differences in repeated measures were analyzed by repeated-measures analysis of variance. Results: Plasma S1P levels decreased significantly from the baseline to low-salt diet period and increased from the low-salt to high-salt diet period. We observed this response in both salt-sensitive and salt-resistant individuals. Plasma S1P levels positively correlated with 24-hour urinary sodium excretion, but not 24-hour urinary potassium excretion. In line with plasma S1P level responses to salt intervention, systolic blood pressure (SBP) and mean arterial pressure (MAP) decreased from the baseline to low-salt diet period and increased from the low-salt to high-salt period. SBP positively correlated with plasma S1P and the correlation was stronger in salt-sensitive individuals than that in salt-resistant individuals. Conclusion: Low-salt dietary intervention decreases plasma S1P levels, whereas high-salt intervention reverses this change and S1P levels positively correlated with SBP in Chinese adults. This provides a high-efficiency and low-cost intervention for plasma S1P levels modulation, with implications for salt-induced blood pressure modulation. Trial registration: NCT02915315. Registered 27 September 2016, http://www.clinicaltrials.gov


Sign in / Sign up

Export Citation Format

Share Document