scholarly journals Response of the Antarctic Circumpolar Current to Atmospheric Variability

2008 ◽  
Vol 21 (12) ◽  
pp. 3020-3039 ◽  
Author(s):  
J. B. Sallée ◽  
K. Speer ◽  
R. Morrow

Abstract Historical hydrographic profiles, combined with recent Argo profiles, are used to obtain an estimate of the mean geostrophic circulation in the Southern Ocean. Thirteen years of altimetric sea level anomaly data are then added to reconstruct the time variable sea level, and this new dataset is analyzed to identify and monitor the position of the two main fronts of the Antarctic Circumpolar Current (ACC) during the period 1993–2005. The authors relate their movements to the two main atmospheric climate modes of the Southern Hemisphere: the Southern Annular Mode (SAM) and the El Niño–Southern Oscillation (ENSO). The study finds that although the fronts are steered by the bathymetry, which sets their mean pathway on first order, in flat-bottom areas the fronts are subject to large meandering because of mesoscale activity and atmospheric forcing. While the dominant mode of atmospheric variability in the Southern Hemisphere, SAM, is relatively symmetric, the oceanic response of the fronts is not, showing substantial regional differences. Around the circumpolar belt the fronts vary in latitude, exposing them to different Ekman transport anomalies induced by the SAM. Three typical scenarios occur in response to atmospheric forcing: poleward movement of the frontal structure in the Indian Basin during positive SAM events, an equatorward movement in the central Pacific, and an intensification without substantial meridional movement in the Indo-Pacific basin. The study also shows the geographical regions that are dominated by a SAM or ENSO response at low and high frequencies.

2018 ◽  
Vol 45 (10) ◽  
pp. 5011-5019 ◽  
Author(s):  
Hajoon Song ◽  
Matthew C. Long ◽  
Peter Gaube ◽  
Ivy Frenger ◽  
John Marshall ◽  
...  

2019 ◽  
Vol 11 (18) ◽  
pp. 4853
Author(s):  
You-Lin Wang ◽  
Yu-Chen Hsu ◽  
Chung-Pan Lee ◽  
Chau-Ron Wu

The Antarctic Circumpolar Current (ACC) plays an important role in the climate as it balances heat energy and water mass between the Pacific and Atlantic Oceans through the Drake Passage. However, because the historical measurements and observations are extremely limited, the decadal and long-term variations of the ACC around the western South Atlantic Ocean are rarely studied. By analyzing reconstructed sea surface temperatures (SSTs) in a 147-year period (1870–2016), previous studies have shown that SST anomalies (SSTAs) around the Antarctic Peninsula and South America had the same phase change as the El Niño Southern Oscillation (ENSO). This study further showed that changes in SSTAs in the regions mentioned above were enlarged when the Pacific Decadal Oscillation (PDO) and the ENSO were in the same warm or cold phase, implying that changes in the SST of higher latitude oceans could be enhanced when the influence of the ENSO is considered along with the PDO.


2015 ◽  
Vol 28 (23) ◽  
pp. 9393-9408 ◽  
Author(s):  
Jin-Yi Yu ◽  
Houk Paek ◽  
Eric S. Saltzman ◽  
Tong Lee

Abstract This study uncovers an early 1990s change in the relationships between El Niño–Southern Oscillation (ENSO) and two leading modes of the Southern Hemisphere (SH) atmospheric variability: the southern annular mode (SAM) and the Pacific–South American (PSA) pattern. During austral spring, while the PSA maintained a strong correlation with ENSO throughout the period 1948–2014, the SAM–ENSO correlation changed from being weak before the early 1990s to being strong afterward. Through the ENSO connection, PSA and SAM became more in-phase correlated after the early 1990s. The early 1990s is also the time when ENSO changed from being dominated by the eastern Pacific (EP) type to being dominated by the central Pacific (CP) type. Analyses show that, while the EP ENSO can excite only the PSA, the CP ENSO can excite both the SAM and PSA through tropospheric and stratospheric pathway mechanisms. The more in-phase relationship between SAM and PSA impacted the post-1990s Antarctic climate in at least two aspects: 1) a stronger Antarctic sea ice dipole structure around the Amundsen–Bellingshausen Seas due to intensified geopotential height anomalies over the region and 2) a shift in the phase relationships of surface air temperature anomalies among East Antarctica, West Antarctica, and the Antarctic Peninsula. These findings imply that ENSO–Antarctic climate relations depend on the dominant ENSO type and that ENSO forcing has become more important to the Antarctic sea ice and surface air temperature variability in the past two decades and will in the coming decades if the dominance of CP ENSO persists.


2008 ◽  
Vol 21 (2) ◽  
pp. 135-148 ◽  
Author(s):  
Valerie J. Loeb ◽  
Eileen E. Hofmann ◽  
John M. Klinck ◽  
Osmund Holm-Hansen ◽  
Warren B. White

AbstractThe West Antarctic Peninsula region is an important source of Antarctic krill (Euphausia superba) in the Southern Ocean. From 1980–2004 abundance and concentration of phytoplankton and zooplankton, krill reproductive and recruitment success and seasonal sea ice extent here were significantly correlated with the atmospheric Southern Oscillation Index and exhibited three- to five-year frequencies characteristic of El Niño–Southern Oscillation (ENSO) variability. This linkage was associated with movements of the Southern Antarctic Circumpolar Current Front and Boundary, a changing influence of Antarctic Circumpolar Current and Weddell Sea waters, and eastward versus westward flow and mixing processes that are consistent with forcing by the Antarctic Dipole high-latitude climate mode. Identification of hydrographic processes underlying ecosystem variability presented here were derived primarily from multi-disciplinary data collected during 1990–2004, a period with relatively stable year-to-year sea ice conditions. These results differ from the overwhelming importance of seasonal sea ice development previously established using 1980–1996 data, a period marked by a major decrease in sea ice from the Antarctic Peninsula region in the late 1980s. These newer results reveal the more subtle consequences of ENSO variability on biological responses. They highlight the necessity of internally consistent long-term multidisciplinary datasets for understanding ecosystem variability and ultimately for establishing well-founded ecosystem management. Furthermore, natural environmental variability associated with interannual- and decadal-scale changes in ENSO forcing must be considered when assessing impacts of climate warming in the Antarctic Peninsula–Weddell Sea region.


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Jifeng Chu ◽  
Kateryna Marynets

AbstractThe aim of this paper is to study one class of nonlinear differential equations, which model the Antarctic circumpolar current. We prove the existence results for such equations related to the geophysical relevant boundary conditions. First, based on the weighted eigenvalues and the theory of topological degree, we study the semilinear case. Secondly, the existence results for the sublinear and superlinear cases are proved by fixed point theorems.


Sign in / Sign up

Export Citation Format

Share Document