scholarly journals Coupling Influences of ENSO and PDO on the Inter-Decadal SST Variability of the ACC around the Western South Atlantic

2019 ◽  
Vol 11 (18) ◽  
pp. 4853
Author(s):  
You-Lin Wang ◽  
Yu-Chen Hsu ◽  
Chung-Pan Lee ◽  
Chau-Ron Wu

The Antarctic Circumpolar Current (ACC) plays an important role in the climate as it balances heat energy and water mass between the Pacific and Atlantic Oceans through the Drake Passage. However, because the historical measurements and observations are extremely limited, the decadal and long-term variations of the ACC around the western South Atlantic Ocean are rarely studied. By analyzing reconstructed sea surface temperatures (SSTs) in a 147-year period (1870–2016), previous studies have shown that SST anomalies (SSTAs) around the Antarctic Peninsula and South America had the same phase change as the El Niño Southern Oscillation (ENSO). This study further showed that changes in SSTAs in the regions mentioned above were enlarged when the Pacific Decadal Oscillation (PDO) and the ENSO were in the same warm or cold phase, implying that changes in the SST of higher latitude oceans could be enhanced when the influence of the ENSO is considered along with the PDO.

2021 ◽  
Author(s):  
Mariem Saavedra-Pellitero ◽  
Anieke Brombacher ◽  
Oliver Esper ◽  
Alexandre de Souza ◽  
Elisa Malinverno ◽  
...  

<p>The Antarctic Circumpolar Current (ACC) is a major driver of global climate. It connects all three ocean basins, integrating global climate variability, and its vertical water mass structure plays a key role in oceanic carbon storage. The Atlantic and Indian sectors of the ACC are well studied, but the Pacific sector lacks deep-sea drilling records. Therefore, past water mass transport through the Drake Passage and its effect on Atlantic Meridional Overturning Circulation are not well understood. To fill this gap, IODP Expedition 383 recovered sediments from three sites in the central South Pacific and three sites from the southern Chilean Margin.</p><p>Here we present the preliminary biostratigraphy developed during the expedition. The sediments contained abundant nannofossils, foraminifera, radiolarians, diatoms and silicoflagellates which produced age models that were in excellent agreement with the shipboard magnetostratigraphy. Two sites contain high-resolution Pleistocene records, one site goes back to the Pliocene, and two others reach back to the late Miocene. Post-cruise research will further refine these age models through high-resolution bio-, magneto- and oxygen isotope stratigraphies that are currently being generated.</p>


2015 ◽  
Vol 45 (6) ◽  
pp. 1610-1631 ◽  
Author(s):  
Emma J. D. Boland ◽  
Emily Shuckburgh ◽  
Peter H. Haynes ◽  
James R. Ledwell ◽  
Marie-José Messias ◽  
...  

AbstractThe use of a measure to diagnose submesoscale isopycnal diffusivity by determining the best match between observations of a tracer and simulations with varying small-scale diffusivities is tested. Specifically, the robustness of a “roughness” measure to discriminate between tracer fields experiencing different submesoscale isopycnal diffusivities and advected by scaled altimetric velocity fields is investigated. This measure is used to compare numerical simulations of the tracer released at a depth of about 1.5 km in the Pacific sector of the Southern Ocean during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field campaign with observations of the tracer taken on DIMES cruises. The authors find that simulations with an isopycnal diffusivity of ~20 m2 s−1 best match observations in the Pacific sector of the Antarctic Circumpolar Current (ACC), rising to ~20–50 m2 s−1 through Drake Passage, representing submesoscale processes and any mesoscale processes unresolved by the advecting altimetry fields. The roughness measure is demonstrated to be a statistically robust way to estimate a small-scale diffusivity when measurements are relatively sparse in space and time, although it does not work if there are too few measurements overall. The planning of tracer measurements during a cruise in order to maximize the robustness of the roughness measure is also considered. It is found that the robustness is increased if the spatial resolution of tracer measurements is increased with the time since tracer release.


Ocean Science ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 201-213 ◽  
Author(s):  
G. Sgubin ◽  
S. Pierini ◽  
H. A. Dijkstra

Abstract. In this paper, the variability of the Antarctic Circumpolar Current system produced by purely intrinsic nonlinear oceanic mechanisms is studied through a sigma-coordinate ocean model, implemented in a large portion of the Southern Ocean at an eddy-permitting resolution under steady surface heat and momentum fluxes. The mean transport through the Drake Passage and the structure of the main Antarctic Circumpolar Current fronts are well reproduced by the model. Intrinsic variability is found to be particularly intense in the Subantarctic Front and in the Argentine Basin, on which further analysis is focused. The low-frequency variability at interannual timescales is related to bimodal behavior of the Zapiola Anticyclone, with transitions between a strong and collapsed anticyclonic circulation in substantial agreement with altimeter observations. Variability on smaller timescales shows clear evidence of topographic Rossby-wave propagation along the eastern and southern flanks of the Zapiola Rise and of mesoscale eddies, also in agreement with altimeter observations. The analysis of the relationship between the low- and high-frequency variability suggests possible mechanisms of mutual interaction.


2020 ◽  
Author(s):  
Roman Tarakanov ◽  
Alexander Gritsenko

<p>We have analyzed the fine structure of Antarctic Circumpolar Current jets in the Drake Passage based on CTD and SADCP measurements over two hydrographic sections in January 2010 and October–November 2011. Eleven jets with a local horizontal velocity maximum were revealed in 2010, and nine jets were in 2011. These individual jets were various combinations of 12 jets of the Antarctic Circumpolar Current, which we revealed earlier in the region south of Africa on the basis of the section data in December 2009. Daily satellite altimetry data available at http://www.aviso.altimetry.fr were also used to interpret the synoptic patterns of currents over the sections. These results allow us to suggest that the multi-jet structure with a number of jets exceeding nine reported by Sokolov&Rintoul, 2009 is common for the entire circumpolar circle and even for regions with significant contraction of the ACC, such as the Drake Passage. However, the question about the number of jets and its temporal and spatial permanency remains open. Investigation was supported by Russian Foundation of Basic Research grant No 18-05-00283.</p>


2008 ◽  
Vol 21 (12) ◽  
pp. 3020-3039 ◽  
Author(s):  
J. B. Sallée ◽  
K. Speer ◽  
R. Morrow

Abstract Historical hydrographic profiles, combined with recent Argo profiles, are used to obtain an estimate of the mean geostrophic circulation in the Southern Ocean. Thirteen years of altimetric sea level anomaly data are then added to reconstruct the time variable sea level, and this new dataset is analyzed to identify and monitor the position of the two main fronts of the Antarctic Circumpolar Current (ACC) during the period 1993–2005. The authors relate their movements to the two main atmospheric climate modes of the Southern Hemisphere: the Southern Annular Mode (SAM) and the El Niño–Southern Oscillation (ENSO). The study finds that although the fronts are steered by the bathymetry, which sets their mean pathway on first order, in flat-bottom areas the fronts are subject to large meandering because of mesoscale activity and atmospheric forcing. While the dominant mode of atmospheric variability in the Southern Hemisphere, SAM, is relatively symmetric, the oceanic response of the fronts is not, showing substantial regional differences. Around the circumpolar belt the fronts vary in latitude, exposing them to different Ekman transport anomalies induced by the SAM. Three typical scenarios occur in response to atmospheric forcing: poleward movement of the frontal structure in the Indian Basin during positive SAM events, an equatorward movement in the central Pacific, and an intensification without substantial meridional movement in the Indo-Pacific basin. The study also shows the geographical regions that are dominated by a SAM or ENSO response at low and high frequencies.


2016 ◽  
Vol 46 (7) ◽  
pp. 2103-2122 ◽  
Author(s):  
D. Randolph Watts ◽  
Karen L. Tracey ◽  
Kathleen A. Donohue ◽  
Teresa K. Chereskin

AbstractThe 4-yr measurements by current- and pressure-recording inverted echo sounders in Drake Passage produced statistically stable eddy heat flux estimates. Horizontal currents in the Antarctic Circumpolar Current (ACC) turn with depth when a depth-independent geostrophic current crosses the upper baroclinic zone. The dynamically important divergent component of eddy heat flux is calculated. Whereas full eddy heat fluxes differ greatly in magnitude and direction at neighboring locations within the local dynamics array (LDA), the divergent eddy heat fluxes are poleward almost everywhere. Case studies illustrate baroclinic instability events that cause meanders to grow rapidly. In the southern passage, where eddy variability is weak, heat fluxes are weak and not statistically significant. Vertical profiles of heat flux are surface intensified with ~50% above 1000 m and uniformly distributed with depth below. Summing poleward transient eddy heat transport across the LDA of −0.010 ± 0.005 PW with the stationary meander contribution of −0.004 ± 0.001 PW yields −0.013 ± 0.005 PW. A comparison metric, −0.4 PW, represents the total oceanic heat loss to the atmosphere south of 60°S. Summed along the circumpolar ACC path, if the LDA heat flux occurred at six “hot spots” spanning similar or longer path segments, this could account for 20%–70% of the metric, that is, up to −0.28 PW. The balance of ocean poleward heat transport along the remaining ACC path should come from weak eddy heat fluxes plus mean cross-front temperature transports. Alternatively, the metric −0.4 PW, having large uncertainty, may be high.


Sign in / Sign up

Export Citation Format

Share Document