scholarly journals Increase in Near-Surface Atmospheric Moisture Content due to Land Use Changes: Evidence from the Observed Dewpoint Temperature Data

2008 ◽  
Vol 136 (4) ◽  
pp. 1554-1561 ◽  
Author(s):  
Rezaul Mahmood ◽  
Kenneth G. Hubbard ◽  
Ronnie D. Leeper ◽  
Stuart A. Foster

Abstract Land use change can significantly affect root zone soil moisture, surface energy balance, and near-surface atmospheric temperature and moisture content. During the second half of the twentieth century, portions of the North American Great Plains have experienced extensive introduction of irrigated agriculture. It is expected that land use change from natural grass to irrigated land use would significantly increase near-surface atmospheric moisture content. Modeling studies have already shown an enhanced rate of evapotranspiration from the irrigated areas. The present study analyzes observed dewpoint temperature (Td) to assess the affect of irrigated land use on near-surface atmospheric moisture content. This investigation provides a unique opportunity to use long-term (1982–2003) mesoscale Td data from the Automated Weather Data Network of the high plains. Long-term daily Td data from 6 nonirrigated and 11 irrigated locations have been analyzed. Daily time series were developed from the hourly data. The length of time series was the primary factor in selection of these stations. Results suggest increase in growing-season Td over irrigated areas. For example, average growing-season Td due to irrigation can be up to 1.56°C higher relative to nonirrigated land uses. It is also found that Td for individual growing-season month at irrigated locations can be increased up to 2.17°C by irrigation. Based on the results, it is concluded that the land use change in the Great Plains has modified near-surface moistness.

Author(s):  
Julia Girard ◽  
Philippe Delacote ◽  
Antoine Leblois

Abstract Agriculture in Sub-Saharan Africa is regularly threatened by the occurrence of weather shocks. We wonder whether the way farmers respond to shocks can affect land use and induce deforestation. Reviewing the existing literature, we found that this question has only been marginally studied. Drawing from the adaptation and land-use change literatures, we then expose the mechanisms through which weather shocks can push farmers to induce land-use change, or conversely to foster conservation. As farmers cope with shocks, their responses can cause degradations in ecosystems which could, in the long term, encourage deforestation and land-use change. To prepare for the next growing season, or adapt to climate variability and risk in the longer term, farmers also make structural adjustments in their farm and land-use decisions, which may lead to changes in land holding. They also resort to adaptation strategies that can indirectly affect land-use decisions by affecting households’ resources (labor, income).


2014 ◽  
Vol 53 (12) ◽  
pp. 2671-2684 ◽  
Author(s):  
A. Park Williams ◽  
Richard Seager ◽  
Max Berkelhammer ◽  
Alison K. Macalady ◽  
Michael A. Crimmins ◽  
...  

AbstractIn 2011, exceptionally low atmospheric moisture content combined with moderately high temperatures to produce a record-high vapor pressure deficit (VPD) in the southwestern United States (SW). These conditions combined with record-low cold-season precipitation to cause widespread drought and extreme wildfires. Although interannual VPD variability is generally dominated by temperature, high VPD in 2011 was also driven by a lack of atmospheric moisture. The May–July 2011 dewpoint in the SW was 4.5 standard deviations below the long-term mean. Lack of atmospheric moisture was promoted by already very dry soils and amplified by a strong ocean-to-continent sea level pressure gradient and upper-level convergence that drove dry northerly winds and subsidence upwind of and over the SW. Subsidence drove divergence of rapid and dry surface winds over the SW, suppressing southerly moisture imports and removing moisture from already dry soils. Model projections developed for the fifth phase of the Coupled Model Intercomparison Project (CMIP5) suggest that by the 2050s warming trends will cause mean warm-season VPD to be comparable to the record-high VPD observed in 2011. CMIP5 projections also suggest increased interannual variability of VPD, independent of trends in background mean levels, as a result of increased variability of dewpoint, temperature, vapor pressure, and saturation vapor pressure. Increased variability in VPD translates to increased probability of 2011-type VPD anomalies, which would be superimposed on ever-greater background VPD levels. Although temperature will continue to be the primary driver of interannual VPD variability, 2011 served as an important reminder that atmospheric moisture content can also drive impactful VPD anomalies.


1997 ◽  
Vol 11 (1) ◽  
pp. 29-42 ◽  
Author(s):  
A. R. Mosier ◽  
W. J. Parton ◽  
D. W. Valentine ◽  
D. S. Ojima ◽  
D. S. Schimel ◽  
...  

Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


2018 ◽  
Vol 19 (3) ◽  
pp. 1109-1119 ◽  
Author(s):  
Xiaolei Sun ◽  
Meng Li ◽  
Guoxi Wang ◽  
Marios Drosos ◽  
Fulai Liu ◽  
...  

2013 ◽  
Vol 10 (2) ◽  
pp. 1193-1207 ◽  
Author(s):  
S.-W. Duan ◽  
S. S. Kaushal

Abstract. Rising water temperatures due to climate and land use change can accelerate biogeochemical fluxes from sediments to streams. We investigated impacts of increased streamwater temperatures on sediment fluxes of dissolved organic carbon (DOC), nitrate, soluble reactive phosphorus (SRP) and sulfate. Experiments were conducted at 8 long-term monitoring sites across land use (forest, agricultural, suburban, and urban) at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Over 20 yr of routine water temperature data showed substantial variation across seasons and years. Lab incubations of sediment and overlying water were conducted at 4 temperatures (4 °C, 15 °C, 25 °C, and 35 °C) for 48 h. Results indicated: (1) warming significantly increased sediment DOC fluxes to overlying water across land use but decreased DOC quality via increases in the humic-like to protein-like fractions, (2) warming consistently increased SRP fluxes from sediments to overlying water across land use, (3) warming increased sulfate fluxes from sediments to overlying water at rural/suburban sites but decreased sulfate fluxes at some urban sites likely due to sulfate reduction, and (4) nitrate fluxes showed an increasing trend with temperature at some forest and urban sites but with larger variability than SRP. Sediment fluxes of nitrate, SRP and sulfate were strongly related to watershed urbanization and organic matter content. Using relationships of sediment fluxes with temperature, we estimate a 5 °C warming would increase mean sediment fluxes of SRP, DOC and nitrate-N across streams by 0.27–1.37 g m−2 yr−1, 0.03–0.14 kg m−2 yr−1, and 0.001–0.06 kg m−2 yr−1. Understanding warming impacts on coupled biogeochemical cycles in streams (e.g., organic matter mineralization, P sorption, nitrification, denitrification, and sulfate reduction) is critical for forecasting shifts in carbon and nutrient loads in response to interactive impacts of climate and land use change.


2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Xia Feng ◽  
Paul Houser

In this study, we developed a suite of spatially and temporally scalable Water Cycle Indicators (WCI) to examine the long-term changes in water cycle variability and demonstrated their use over the contiguous US (CONUS) during 1979–2013 using the MERRA reanalysis product. The WCI indicators consist of six water balance variables monitoring the mean conditions and extreme aspects of the changing water cycle. The variables include precipitation (P), evaporation (E), runoff (R), terrestrial water storage (dS/dt), moisture convergence flux (C), and atmospheric moisture content (dW/dt). Means are determined as the daily total value, while extremes include wet and dry extremes, defined as the upper and lower 10th percentile of daily distribution. Trends are assessed for annual and seasonal indicators at several different spatial scales. Our results indicate that significant changes have occurred in most of the indicators, and these changes are geographically and seasonally dependent. There are more upward trends than downward trends in all eighteen annual indicators averaged over the CONUS. The spatial correlations between the annual trends in means and extremes are statistically significant across the country and are stronger forP,E,R, andCcompared todS/dtanddW/dt.


Sign in / Sign up

Export Citation Format

Share Document